213 research outputs found

    Observation of proton-tagged, central (semi)exclusive production of high-mass lepton pairs in pp collisions at 13 TeV with the CMS-TOTEM precision proton spectrometer

    No full text

    Observation of four top quark production in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe observation of the production of four top quarks in proton-proton collisions is reported, based on a data sample collected by the CMS experiment at a center-of-mass energy of 13 TeV in 2016-2018 at the CERN LHC and corresponding to an integrated luminosity of 138 fb1^{-1}. Events with two same-sign, three, or four charged leptons (electrons and muons) and additional jets are analyzed. Compared to previous results in these channels, updated identification techniques for charged leptons and jets originating from the hadronization of b quarks, as well as a revised multivariate analysis strategy to distinguish the signal process from the main backgrounds, lead to an improved expected signal significance of 4.9 standard deviations above the background-only hypothesis. Four top quark production is observed with a significance of 5.6 standard deviations, and its cross section is measured to be 17.73.5+3.7^{+3.7}_{-3.5} (stat) 1.9+2.3^{+2.3}_{-1.9} (syst) fb, in agreement with the available standard model predictions

    Search for narrow resonances in the <math display="inline"><mi>b</mi></math>-tagged dijet mass spectrum in proton-proton collisions at <math display="inline"><msqrt><mi>s</mi></msqrt><mo>=</mo><mn>13</mn><mtext> </mtext><mtext> </mtext><mi>TeV</mi></math>

    No full text
    International audienceA search is performed for narrow resonances decaying to final states of two jets, with at least one jet originating from a b quark, in proton-proton collisions at s=13  TeV. The data set corresponds to an integrated luminosity of 138  fb-1 collected with the CMS detector at the LHC. Jets originating from energetic b hadrons are identified through a b-tagging algorithm that utilizes a deep neural network or the presence of a muon inside a jet. The invariant mass spectrum of jet pairs is well described by a smooth parametrization and no evidence for the production of new particles is observed. Upper limits on the production cross section are set for excited b quarks and other resonances decaying to dijet final states containing b quarks. These limits exclude at 95% confidence level models of Z′ bosons with masses from 1.8 TeV to 2.4 TeV and of excited b quarks with masses from 1.8 TeV to 4.0 TeV. This is the most stringent exclusion of excited b quarks to date

    Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state is presented. The analysis is based on proton-proton collision data recorded by the CMS detector in 2016-2018 at a centre-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 138 fb1^{-1}. The search is sensitive to resonances with masses between 1.3 and 6 TeV, decaying to bosons that are highly Lorentz-boosted such that each of the bosons forms a single large-radius jet. Machine learning techniques are employed to identify such jets. No significant excess over the estimated standard model background is observed. A maximum local significance of 3.6 standard deviations, corresponding to a global significance of 2.3 standard deviations, is observed at masses of 2.1 and 2.9 TeV. In a heavy vector triplet model, spin-1 Z' and W' resonances with masses below 4.8 TeV are excluded at the 95% confidence level (CL). These limits are the most stringent to date. In a bulk graviton model, spin-2 gravitons and spin-0 radions with masses below 1.4 and 2.7 TeV, respectively, are excluded at 95% CL. Production of heavy resonances through vector boson fusion is constrained with upper cross section limits at 95% CL as low as 0.1 fb

    Measurement of the dependence of the hadron production fraction ratio fs/fuf_\mathrm{s} / f_\mathrm{u} and fd/fuf_\mathrm{d} / f_ \mathrm{u} on B meson kinematic variables in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe dependence of the ratio between the Bs0_\mathrm{s}^0 and B+^+ hadron production fractions, fs/fuf_\mathrm{s} / f_\mathrm{u}, on the transverse momentum (pTp_\mathrm{T}) and rapidity of the B mesons is studied using the decay channels Bs0_\mathrm{s}^0\to J/ψϕ/\psi\,\phi and B+^+\to J/ψ/\psi K+^+. The analysis uses a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 61.6 fb1^{-1}. The fs/fuf_\mathrm{s} / f_\mathrm{u} ratio is observed to depend on the B pTp_\mathrm{T} and to be consistent with becoming asymptotically constant at large pTp_\mathrm{T}. No rapidity dependence is observed. The ratio of the B0^0 to B+^+ hadron production fractions, fd/fuf_\mathrm{d} / f_\mathrm{u}, measured using the B0^0\to J/ψ/\psi K0^{*0} decay channel, is found to be consistent with unity and independent of pTp_\mathrm{T} and rapidity, as expected from isospin invariance

    Observation of the rare decay of the η\eta meson to four muons

    No full text
    A search for the rare η\eta\toμ+μμ+μ\mu^+\mu^-\mu^+\mu^- double-Dalitz decay is performed using a sample of proton-proton collisions, collected by the CMS experiment at the CERN LHC with high-rate muon triggers in 2017-2018 and corresponding to an integrated luminosity of 101 fb1^{-1}. A signal having a statistical significance well in excess of 5 standard deviations is observed. Using the \emm decay as normalization, the branching fraction B(\mathcal{B}(ημ+μμ+μ) \to \mu^+\mu^-\mu^+\mu^-) = ( 5.0 ±\pm 0.8 (stat) ±\pm 0.7 (syst) ±\pm 0.7 B2μ\mathcal{B}_{2\mu} ) ×\times 109^{-9} is measured, where the last term is the uncertainty in the normalization channel branching fraction. This is the first measurement of this branching fraction and is found to be in agreement with theoretical predictions

    Search for medium effects using jets from bottom quarks in PbPb collisions at sNN\sqrt{s_\mathrm{NN}} = 5.02 TeV

    No full text
    The first study of the shapes of jets arising from bottom (b) quarks in heavy ion collisions is presented. Jet shapes are studied using charged hadron constituents as a function of their radial distance from the jet axis. Lead-lead (PbPb) collision data at a nucleon-nucleon center-of-mass energy of sNN\sqrt{s_\mathrm{NN}} = 5.02 TeV were recorded by the CMS detector at the LHC, with an integrated luminosity of 1.69 nb1^{-1}. Compared to proton-proton collisions, a redistribution of the energy in b jets to larger distances from the jet axis is observed in PbPb collisions. This medium-induced redistribution is found to be substantially larger for b jets than for inclusive jets

    Search for new physics in multijet events with at least one photon and large missing transverse momentum in proton-proton collisions at 13 TeV

    No full text
    A search for new physics in final states consisting of at least one photon, multiple jets, and large missing transverse momentum is presented, using proton-proton collision events at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 137 fb1^{-1}, recorded by the CMS experiment at the CERN LHC from 2016 to 2018. The events are divided into mutually exclusive bins characterized by the missing transverse momentum, the number of jets, the number of b-tagged jets, and jets consistent with the presence of hadronically decaying W, Z, or Higgs bosons. The observed data are found to be consistent with the prediction from standard model processes. The results are interpreted in the context of simplified models of pair production of supersymmetric particles via strong and electroweak interactions. Depending on the details of the signal models, gluinos and squarks of masses up to 2.35 and 1.43 TeV, respectively, and electroweakinos of masses up to 1.23 TeV are excluded at 95% confidence level

    Search for electroweak production of charginos and neutralinos at <math altimg="si1.svg"><msqrt><mrow><mi>s</mi></mrow></msqrt><mo linebreak="goodbreak" linebreakstyle="after">=</mo><mn>13</mn><mspace width="0.25em"/><mtext>TeV</mtext></math> in final states containing hadronic decays of WW, WZ, or WH and missing transverse momentum

    No full text
    International audienceThis Letter presents a search for direct production of charginos and neutralinos via electroweak interactions. The results are based on data from proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb−1. The search considers final states with large missing transverse momentum and pairs of hadronically decaying bosons WW, WZ, and WH, where H is the Higgs boson. These bosons are identified using novel algorithms. No significant excess of events is observed relative to the expectations from the standard model. Limits at the 95% confidence level are placed on the cross section for production of mass-degenerate wino-like supersymmetric particles χ˜1± and χ˜20, and mass-degenerate higgsino-like supersymmetric particles χ˜1±, χ˜20, and χ˜30. In the limit of a nearly-massless lightest supersymmetric particle χ˜10, wino-like particles with masses up to 870 and 960 GeV are excluded in the cases of χ˜20→Zχ˜10 and χ˜20→Hχ˜10, respectively, and higgsino-like particles are excluded between 300 and 650 GeV

    Search for pair production of vector-like quarks in leptonic final states in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    A search is presented for vector-like T and B quark-antiquark pairs produced in proton-proton collisions at a center-of-mass energy of 13 TeV. Data were collected by the CMS experiment at the CERN LHC in 2016–2018, with an integrated luminosity of 138 fb1^{−1}. Events are separated into single-lepton, same-sign charge dilepton, and multi-lepton channels. In the analysis of the single-lepton channel a multilayer neural network and jet identification techniques are employed to select signal events, while the same-sign dilepton and multilepton channels rely on the high-energy signature of the signal to distinguish it from standard model backgrounds. The data are consistent with standard model background predictions, and the production of vector-like quark pairs is excluded at 95% confidence level for T quark masses up to 1.54 TeV and B quark masses up to 1.56 TeV, depending on the branching fractions assumed, with maximal sensitivity to decay modes that include multiple top quarks. The limits obtained in this search are the strongest limits to date for TT \textrm{T}\overline{\textrm{T}} production, excluding masses below 1.48 TeV for all decays to third generation quarks, and are the strongest limits to date for BB \textrm{B}\overline{\textrm{B}} production with B quark decays to tW.[graphic not available: see fulltext
    corecore