406 research outputs found

    Smoking-mediated up-regulation of GAD67 expression in the human airway epithelium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The production of gamma-amino butyric acid (GABA) is dependent on glutamate decarboxylases (GAD65 and GAD67), the enzymes that catalyze the decarboxylation of glutamate to GABA. Based on studies suggesting a role of the airway epithelial GABAergic system in asthma-related mucus overproduction, we hypothesized that cigarette smoking, another disorder associated with increased mucus production, may modulate GABAergic system-related gene expression levels in the airway epithelium.</p> <p>Methods</p> <p>We assessed expression of the GABAergic system in human airway epithelium obtained using bronchoscopy to sample the epithelium and microarrays to evaluate gene expression. RT-PCR was used to confirm gene expression of GABAergic system gene in large and small airway epithelium from heathy nonsmokers and healthy smokers. The differences in the GABAergic system gene was further confirmed by TaqMan, immunohistochemistry and Western analysis.</p> <p>Results</p> <p>The data demonstrate there is a complete GABAergic system expressed in the large and small human airway epithelium, including glutamate decarboxylase, GABA receptors, transporters and catabolism enzymes. Interestingly, of the entire GABAergic system, smoking modified only the expression of GAD67, with marked up-regulation of GAD67 gene expression in both large (4.1-fold increase, p < 0.01) and small airway epithelium of healthy smokers (6.3-fold increase, p < 0.01). At the protein level, Western analysis confirmed the increased expression of GAD67 in airway epithelium of healthy smokers compared to healthy nonsmokers (p < 0.05). There was a significant positive correlation between GAD67 and MUC5AC gene expression in both large and small airway epithelium (p < 0.01), implying a link between GAD67 and mucin overproduction in association with smoking.</p> <p>Conclusions</p> <p>In the context that GAD67 is the rate limiting enzyme in GABA synthesis, the correlation of GAD67 gene expression with MUC5AC expressions suggests that the up-regulation of airway epithelium expression of GAD67 may contribute to the increase in mucus production observed in association with cigarette smoking.</p> <p>Trial registration</p> <p>NCT00224198; NCT00224185</p

    Smoking Is Associated with Shortened Airway Cilia

    Get PDF
    BACKGROUND:Whereas cilia damage and reduced cilia beat frequency have been implicated as causative of reduced mucociliary clearance in smokers, theoretically mucociliary clearance could also be affected by cilia length. Based on models of mucociliary clearance predicting that cilia length must exceed the 6-7 microm airway surface fluid depth to generate force in the mucus layer, we hypothesized that cilia height may be decreased in airway epithelium of normal smokers compared to nonsmokers. METHODOLOGY/PRINCIPAL FINDINGS:Cilia length in normal nonsmokers and smokers was evaluated in aldehyde-fixed, paraffin-embedded endobronchial biopsies, and air-dried and hydrated samples were brushed from human airway epithelium via fiberoptic bronchoscopy. In 28 endobronchial biopsies, healthy smoker cilia length was reduced by 15% compared to nonsmokers (p<0.05). In 39 air-dried samples of airway epithelial cells, smoker cilia length was reduced by 13% compared to nonsmokers (p<0.0001). Analysis of the length of individual, detached cilia in 27 samples showed that smoker cilia length was reduced by 9% compared to nonsmokers (p<0.05). Finally, in 16 fully hydrated, unfixed samples, smoker cilia length was reduced 7% compared to nonsmokers (p<0.05). Using genome-wide analysis of airway epithelial gene expression we identified 6 cilia-related genes whose expression levels were significantly reduced in healthy smokers compared to healthy nonsmokers. CONCLUSIONS/SIGNIFICANCE:Models predict that a reduction in cilia length would reduce mucociliary clearance, suggesting that smoking-associated shorter airway epithelial cilia play a significant role in the pathogenesis of smoking-induced lung disease

    Spontaneous Expression of the c-sis Gene and Release of a Platelet-derived Growth Factorlike Molecule by Human Alveolar Macrophages

    Get PDF
    Alveolar macrophages from normal individuals and patients with interstitial lung diseases spontaneously expressed a 4.2-kilobase mRNA complementary to the c-sis gene, a proto-oncogene coding for one of the chains of platelet-derived growth factor (PDGF). Concomitantly, these cells released a mediator with the properties of PDGF, including: (a) chemotactic factor for smooth muscle cells whose activity was resistant to heat and acid, but sensitive to reduction; (b) mitogenic (competence) activity for fibroblasts; (c) ability to compete with PDGF for its receptor, and (d) precipitated by an anti-PDGF antibody. While blood monocytes did not contain c-sis mRNA transcripts, monocytes matured in vitro expressed c-sis, consistent with the concept that expression of c-sis occurs during the differentiation of monocytes into alveolar macrophages. Together with the known actions of PDGF, these observations suggest that the c-sis proto-oncogene and its PDGF product are part of the armamentarium available to the alveolar macrophages for normal lung defense and participation in lung inflammation

    The Human Airway Epithelial Basal Cell Transcriptome

    Get PDF
    The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population.. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels.The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium
    • …
    corecore