26,270 research outputs found
Thermal expansion and pressure effect in MnWO4
MnWO4 has attracted attention because of its ferroelectric property induced
by frustrated helical spin order. Strong spin-lattice interaction is necessary
to explain ferroelectricity associated with this type of magnetic order.We have
conducted thermal expansion measurements along the a, b, c axes revealing the
existence of strong anisotropic lattice anomalies at T1=7.8 K, the temperature
of the magnetic lock-in transition into a commensurate low-temperature
(reentrant paraelectric) phase. The effect of hydrostatic pressure up to 1.8
GPa on the FE phase is investigated by measuring the dielectric constant and
the FE polarization. The low- temperature commensurate and paraelectric phase
is stabilized and the stability range of the ferroelectric phase is diminished
under pressure.Comment: 2 pages, 3 figures. SCES conference proceedings, houston, TX, 2007.
to be published in Physica
Symmetry Aspects in Nonrelativistic Multi-Scalar Field Models and Application to a Coupled Two-Species Dilute Bose Gas
We discuss unusual aspects of symmetry that can happen due to entropic
effects in the context of multi-scalar field theories at finite temperature. We
present their consequences, in special, for the case of nonrelativistic models
of hard core spheres. We show that for nonrelativistic models phenomena like
inverse symmetry breaking and symmetry non-restoration cannot take place, but a
reentrant phase at high temperatures is shown to be possible for some region of
parameters. We then develop a model of interest in studies of Bose-Einstein
condensation in dilute atomic gases and discuss about its phase transition
patterns. In this application to a Bose-Einstein condensation model, however,
no reentrant phases are found.Comment: 8 pages, 1 eps figure, IOP style. Based on a talk given by R. O.
Ramos at the QFEXT05 workshop, Barcelona, Spain, September 5-9, 2005. One
reference was update
- …