5 research outputs found

    Generating Highly Specific Spectra and Identifying Thermal Decomposition Products via Gas Chromatography / Vacuum Ultraviolet Spectroscopy (GC/VUV): Application to Nitrate Ester Explosives

    Get PDF
    Gas chromatography/mass spectrometry (GC/MS) is a "workhorse" instrument for chemical analysis, but it can be limited in its ability to differentiate structurally similar compounds. The coupling of GC to vacuum ultraviolet (VUV) spectroscopy is a recently developed technique with the potential for increased detection specificity. To date, GC/VUV has been demonstrated in the analysis of volatile organic compounds, petroleum products, aroma compounds, pharmaceuticals, illegal drugs, and lipids. This paper is the first to report on the utility of GC/VUV for explosives analysis in general, and the first to report on thermal degradation within the VUV cell and its analytical utility. The general figures of merit and performance of GC/VUV were evaluated with authentic standards of nitrate ester explosives (e.g., nitroglycerine (NG), ethylene glycol dinitrate (EGDN), pentaerythritol tetranitrate (PETN), and erythritol tetranitrate (ETN)). In addition, the explosive analytes were thermally degraded in the VUV cell, yielding reproducible, complex and characteristic mixtures of gas phase products (e.g., nitric oxide, carbon monoxide, and formaldehyde). The relative amounts of the degradation products were estimated via spectral subtraction of library spectra. Lastly, GC/VUV was used to analyze milligram quantities of intact and burned samples of double-base smokeless powders containing nitroglycerine, diphenylamine, ethyl centralite, and dibutylphthalat

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α=1.63±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7

    Heme Oxygenase and the Kidney

    No full text
    corecore