17 research outputs found
An integrated biostratigraphy and seismic stratigraphy for the late Neogene continental margin succession in northern Taranaki Basin, New Zealand
Our aim has been to develop an integrated biostratigraphy and seismic stratigraphy for the Pliocene and Pleistocene formations (Ariki, Mangaa, Giant Foresets) in northern Taranaki Basin to better understand the evolution of the modern continental margin offshore central-western North Island, New Zealand. Detailed mapping of seismic reflectors in part of the basin, when compared with correlations of late Neogene stage boundaries between 11 well sections, has highlighted crossover between the datasets. To help resolve this issue, the biostratigraphy of the Pliocene-Pleistocene parts of each of four well sections (Arawa-1, Ariki-1, Kora-1, and Wainui-1) has been re-examined using a dense suite of samples. In addition, the biostratigraphy of seven other well sections (Awatea-1, Kahawai-1, Mangaa-1, Taimana-1, Tangaroa-1, Te Kumi-1, and Turi-1) has been re-evaluated. The crossover is partly attributed to a combination of sampling resolution inherent in exploration well sections, the mixed nature of cuttings samples, and the general scarcity of age-diagnostic planktic foraminifera in the late Neogene formations. The achievement of seismic closure suggests that error in the mapping of the seismic reflectors is not a significant source of the uncertainty (crossover). We have developed a workable time-stratigraphic framework by qualitatively weighting the biostratigraphic data in each of the well sections, thereby identifying the parts of particular well sections with the highest resolution microfossil data and the optimal stratigraphic position of stage boundaries with respect to the mapped seismic horizons/seismic units. Hence, it is possible to assign the known numerical ages for these stage boundaries to reflection horizons/seismic units mapped within the basin. We have applied this information to produce a series of isopach maps for successive stage boundaries that help show the sedimentary evolution of the continental margin succession west of central North Island
Slow slip source characterized by lithological and geometric heterogeneity
Slow slip events (SSEs) accommodate a significant proportion of tectonic plate motion at subduction zones, yet little is known about the faults that actually host them. The shallow depth (<2 km) of well-documented SSEs at the Hikurangi subduction zone offshore New Zealand offers a unique opportunity to link geophysical imaging of the subduction zone with direct access to incoming material that represents the megathrust fault rocks hosting slow slip. Two recent International Ocean Discovery Program Expeditions sampled this incoming material before it is entrained immediately down-dip along the shallow plate interface. Drilling results, tied to regional seismic reflection images, reveal heterogeneous lithologies with highly variable physical properties entering the SSE source region. These observations suggest that SSEs and associated slow earthquake phenomena are promoted by lithological, mechanical, and frictional heterogeneity within the fault zone, enhanced by geometric complexity associated with subduction of rough crust
Element Case Studies: Cobalt
International audienceCobalt is economically considered as a critical metal. The main known Co ore deposits are found in the Katanga Copperbelt (Democratic Republic of Congo) where a high richness of Cu-Co tolerant and accumulator plants have developed. Cobalt mining has disseminated and disseminates large quantities of wastes in the environment and becomes a major environmental issue. Reduction of environmental risks and Co dispersion can be performed by phytoremediation and/or agromining, using trace element tolerant and putative hyperaccumulator plants originated from the biodiversity of natural Co/Cu-enriched habitats. Accumulation of foliar Co to >300 μg g-1 is exceptionally rare globally, and known principally from the Copperbelt of Central Africa. This chapter highlights advances on Co accumulation in plants, examines the potential of a Co accumulator in agromining, and defines perspectives for Co agromining by designing multi-functions and services of agroecosystems by a functional plant traits approach