8 research outputs found
Mercury in Florida Bay fish: spatial distribution of elevated concentrations and possible linkages to Everglades restoration
Health advisories are now posted in northern Florida Bay, adjacent to the Everglades, warning of high mercury concentrations in some species of gamefish. Highest
concentrations of mercury in both forage fish and gamefish have been measured in the northeastern corner of Florida Bay, adjacent to the dominant freshwater inflows from the Everglades. Thirty percent of spotted seatrout (Cynoscion nebulosus Cuvier, 1830) analyzed exceeded Floridaâs no consumption level of 1.5 ÎŒg gâ1 mercury in this area. We hypothesized that freshwater draining the Everglades served
as the major source of methylmercury entering the food web supporting gamefish. A lack of correlation between mercury concentrations and salinity did not support this hypothesis, although enhanced bioavailability of methylmercury is possible as freshwater is diluted with estuarine water. Stable isotopes of carbon, nitrogen, and
sulfur were measured in fish to elucidate the shared pathways of methylmercury and nutrient elements through the food web. These data support a benthic source of both methylmercury and nutrient elements to gamefish within the eastern bay, as opposed to a dominant watershed source. Ecological characteristics of the eastern bay, including active redox cycling in near-surface sediments without excessive sulfide production are hypothesized to promote methylmercury formation and bioaccumulation in the benthos. Methylmercury may then accumulate in gamefish through a food web supported by benthic microalgae, detritus, pink shrimp (Farfantepenaeus duorarum Burkenroad, 1939), and other epibenthic feeders. Uncertainty remains as to the relative importance of watershed imports of methylmercury from the Everglades and in situ production in the bay, an uncertainty that needs resolution if the effects of Everglades restoration on mercury levels in fish are to be modeled and managed
Exploring ecosystem-change and society through a landscape lens: Recent progress in european landscape research
Landscapes are closely linked to human well-being, but they are undergoing rapid and fundamental change. Understanding the societal transformation underlying these landscape changes, as well as the ecological and societal outcomes of landscape transformations across scales are prime areas for landscape research. We review and synthesize findings from six important areas of landscape research in Europe and discuss how these findings may advance the study of ecosystem change and society and its thematic key priorities. These six areas are: (1) linkages between people and the environment in landscapes, (2) landscape structure and land-use intensity, (3) long-term landscape history, (4) driving forces, processes, and actors of landscape change, (5) landscape values and meanings, and (6) landscape stewardship. We propose that these knowledge areas can contribute to the study of ecosystem change and society, considering nested multiscale dynamics of social-ecological systems; the stewardship of these systems and their ecosystem services; and the relationships between ecosystem services, human well-being, wealth, and poverty. Our synthesis highlights that knowledge about past and current landscape patterns, processes, and dynamics provides guidance for developing visions to support the sustainable stewardship of social-ecological systems under future conditions