266 research outputs found

    Research in planetary astronomy and operation of the Mauna Kea Observatory

    Get PDF
    Spectroscopic studies with ground-based telescopes at low resolution can give compositional information of the surfaces and atmospheres of planets, satellites, asteroids, and comets. Solid state absorptions in ices and minerals are measurable by the low-resolution spectrophotometric technique. This program includes spectroscopy of distant comets, asteroids of particular interest in various contexts (planet crossers, outer main belt, trojans, etc.), Pluto and Charon, and planetary satellites of particular interest (Iapetus, Io, Uranian satellites, etc.). In the case of planets, satellites, and comets, emphasis is placed on volatiles (ices and organics), while for asteroids the stress is on mineralogy and the connection with the meteorites. New spectra show that the IR signature of Triton has changed since 1980, in that the methane bands are significantly weaker. Spectral evidence for the presence of molecular nitrogen remains convincing. Also, the brightness of Triton throughout its orbital cycle was measured to higher precision than before and was found to be constant to better than 0.02 mag. Suggestive spectral evidence was found for the presence of the C-H stretching mode band in diffuse reflection on asteroid 130 Elektra

    Tholins as Coloring Agents on Pluto and Other Icy Solar System Bodies

    Get PDF
    Tholins are refractory organic solids of complex structure and high molecular weight, with a wide range of color ranging from yellow and orange to dark red, and through tan to black. They are made in the laboratory by energy deposition (photons or charged particles) in gases and ices containing the simple molecules (e.g., N2, CH4, CO) found in planetary atmospheres or condensed on planetary surfaces. They are widely implicated in providing the colors and albedos, particularly in the region 0.3-1.0 microns, of several outer Solar System bodies, including Pluto, as well as aerosols in planetary atmospheres such as Titan. Recent color images of Pluto with the New Horizons spacecraft show concentrations of coloring agent(s) in some regions of the surface, and apparent near-absence in other regions. Tholins that may to some degree represent surface chemistry on Pluto have been synthesized in the laboratory by energetic processing of mixtures of the ices (N2, CH4, CO) known on Pluto's surface, or the same molecules in the gas phase. Details of the composition and yield vary with experimental conditions. Chemical analysis of Pluto ice tholins shows evidence of amides, carboxylic acids, urea, carbodiimides, and nitriles. Aromatic/olefinic, amide, and other functional groups are identified in XANES analysis. The ice tholins produced by e- irradiation have a higher concentration of N than UV ice tholins, with N/C approx. 0.9 (versus approx. 0.5 for UV tholins) and O/C approx.0.2. Raman spectra of the electron tholin show a high degree of structural disorder, while strong UV fluorescence indicates a large aromatic content. EUV photolysis of a Pluto gaseous atmosphere analog yields pale yellow solids relatively transparent in the visual, and with aliphatic CH bonds prominent in IR spectra. This or similar material may be responsible for Pluto's hazes

    A study of the Io-associated plasma and neutral sodium cloud

    Get PDF
    Narrow-band interference filter images were obtained for the Io torus at the S II wavelengths of 6716, 6731 and at the wavelenght of the S III, 9532 spectrum. The purpose of these observations is to study the short term temporal behavior of the torus and to gain a better understanding of the systematic morphology of the torus. From these images, estimates were obtained for the electron and ion densities and ion temperatures as a function of longitude, latitude, radius from Jupiter, and time. From the analysis of images taken in 1983 and 1984, extremely sharp longitudinal variations in plasma density were detected, subcorotational velocities were measures in the torus plasma, the presence of an optical east-west brightness asymmetry was confirmed in the ion emissions, and longitudinal variations were detected in torus ion temperatures

    The Chemistry of Pluto and its Satellites

    Get PDF
    Pluto's bulk composition and the composition of the surface layers hold clues to the origin and evolution of a number of other Solar System bodies of comparable size in the region beyond Neptune. The July 14, 2015 flyby of the Pluto system with the New Horizons spacecraft afforded the opportunity to corroborate and greatly improve discoveries about the planet and its satellites derived Earth-based studies. It also revealed extraordinary details of the surface and atmosphere of Pluto, as well as the geology and composition of Charon and two smaller satellites. With a mean density of 1.86 g/sq cm, the bulk composition of Pluto is about two-thirds anhydrous solar composition rocky material and one-third volatiles (primarily H2O in liquid and solid states) by mass, the surface is a veneer of ices dominated by N2, with smaller amounts of CH4 and CO, as well as limited exposures of H2O ice (considered to be "bedrock"). N2, CH4, and CO occur as solid solutions at temperature-dependent mutual concentrations, each component being soluble in the others. Frozen C2H6 as a minor component has also been identified. Sublimation and recondensation of N2, CH4, and CO over seasonal (248 y) and Milankovich-type megaseasons (approx. 3 My) result in the redistribution of these ices over time and with latitude control. Solid N2 is found in glaciers originating in higher elevations and flowing at the present time into a basin structure larger than the State of Texas, forming a convecting lens of N2 that overturns on a timescale of order 10 My. The varied colors of Pluto's landscape arise from the energetic processing of the surface ices in processes that break the simple molecules and reassemble complex organic structures consisting of groups of aromatic rings connected by aliphatic chains. When synthesized in the laboratory by UV or electron irradiation of a Pluto mix of ice, this material, called tholin, has colors closely similar to Pluto. The Pluto ice tholin analog contains carboxylic acids, urea, ketones, aldehydes, amines, and some nitriles. The largest satellite, Charon has density 1.70 g/sq cm and it is about 3/5 anhydrous solar composition rock, with the remainder in H2O ice. The surface H2O ice is infused in some way with NH3, probably as a hydrate, distributed nonuniformly, but to some degree related to geological structures. Pluto's atmosphere is N2, CH4, with CO, C2-hydrocarbons, HCN, and other molecules in trace but detectable amounts. The atmosphere supports a complex haze structure with about 20 discrete layers, and suspected clouds. The haze is presumed to be made of aggregates of complex hydrocarbons (tholins) produced by photolysis of the atmospheric gases, and with similar composition to the ice tholins made on the planet's surface. Urea and a suite of carboxylic acids are of interest for prebiotic and biological chemistries

    Compositions of the Surfaces of Pluto and its Satellites

    Get PDF
    The information we have on the chemical compositions of the surfaces of Pluto and Charon has been obtained from Earth-based near-infrared spectroscopy. These bodies are seen in diffusely scattered sunlight upon which absorption bands diagnostic of specific ices are superimposed. Identified so far on Pluto are molecular nitrogen (N2), methane (CH4), carbon monoxide (CO), and ethane (C2H6), all in the frozen state. Charon has the clear spectral signature of H2O ice in the crystalline phase, plus an absorption band near 2.2 microns identified as a hydrated form of NH3. No diagnostic spectra of Pluto's other satellites are currently available. A fraction of Pluto's CH4 is dissolved in solid N2, which is in the hexagonal beta-phase. When a small concentration of CH4 exists in a N2 crystalline matrix, its absorption bands are shifted in wavelength by a small but detectable amount. Indeed the shifting of the CH4 bands is diagnostic of a host matrix. In the case of Pluto, the N2 band (2.148 microns) itself is detected, but for other trans-Neptunian objects where the N2 band cannot be seen, the shifted CH4 bands demonstrate the presence of N2 or (less likely) some other spectrally neutral and transparent matrix material (e.g., Ar). The absence of detectable CO2 and H2O ices on Pluto, while they are clearly present on the otherwise very similar Triton, is noteworthy. The ices of Pluto distributed non-uniformly across its surface, and the distribution shows long-term (decadal) changes. Both seasonal and secular changes may be occurring through transport across the surface as a result of changing temperature, and by seasonal changes in the vapor pressure equilibrium of the ice with the tenuous and variable atmosphere. Models of the photochemistry of the surface ices and the atmosphere of Pluto predict the presence of several materials not yet detected; the most abundant photoproducts are expected to be C2H2, C4H2, HCN, C2H6; HCN has been detected on Triton. Both Pluto and Charon have surface components in addition to the detected ices. These materials of presently unknown composition serve to reduce the albedos of both bodies below that expected for pure ices, and in the case of Pluto impart a yellow-brown coloration; the color of Charon is more nearly neutral. It is generally thought that the non-ice components are more refractory than the ices and that they may be complex carbonaceous materials derived from the ultraviolet and charged particle processing of the surface ices. Minerals are also plausible candidates for the non-ice fraction. The refractory colored components may constitute bedrock upon which variable amounts of the ices are alternately deposited and evaporated as the seasons change. Water ice is expected to be a component of the bedrock, although it has not yet been reliably identified

    The Early Planetary Research of Tobias C. Owen

    Get PDF
    Tobias Chant Owen (Toby) was a graduate student of G. P. Kuiper, receiving his Ph.D. in the Dept. of Astronomy, University of Arizona, in 1965. His thesis was broadly titled "Studies of Planetary Spectra in the Photographic Infrared", and primarily presented a study of the composition and other properties of Jupiter, as well as the abundance and surface pressure of CO2 on Mars. The surface pressure on Mars was a topic of debate at that time, with a wide range of diverse observational results from several investigators. The Jupiter work in particular consisted of the analysis of Kuiper's unpublished spectra that were made with photographic plates pushed to the longest wavelength possible, about 1120 nm, with ammonia-hypersensitized Kodak Z emulsions. Toby used the long-pathlength absorption cells at the Lunar and Planetary Lab to study the spectra of CH4 and NH3 at pressures and temperatures relevant to Jupiter (and Saturn), as well as to search for spectral signatures of potential minor components of their atmospheres. Toby also obtained new spectra of Io, Ganymede, and Saturn and its rings, extended to the long-wavelength limit of photographic emulsions. No new molecular absorptions were found, although Owen basically confirmed Kuiper's earlier result that Saturn's rings are covered (or composed of) with H2O ice or frost. As he pursued a broad range of problems of planetary atmospheres, Toby used existing and newly acquired spectra of the planets in the photographic and near-infrared wavelength regions, together with data he obtained in the laboratory with long-pathlength absorption cells, to resolve some outstanding issues of unidentified spectral features and to clarify issues of the compositions, temperatures, and atmospheric pressures of several bodies. This work laid the foundation for his later decades of studies of planetary atmospheres and comets with spacecraft as an active participant in many US and European missions. He was very influential in shaping the science goals of several missions, and in the interpretation of the results

    Hydrocarbons on the Icy Satellites of Saturn

    Get PDF
    The Visible-Infrared Mapping Spectrometer on the Cassini Spacecraft has obtained spectral reflectance maps of the satellites of Saturn in the wavelength region 0.4-5.1 micrometers since its insertion into Saturn orbit in late 2004. We have detected the spectral signature of the C-H stretching molecular mode of aromatic and aliphatic hydrocarbons in the low albedo material covering parts of several of Saturn's satellites, notably Iapetus and Phoebe (Cruikshank et al. 2008). The distribution of this material is complex, and in the case of Iapetus we are seeking to determine if it is related to the native grey-colored materials left as lag deposits upon evaporation of the ices, or represents in-fall from an external source, notably the newly discovered large dust ring originating at Phoebe. This report covers our latest exploration of the nature and source of this organic material

    Origins of the Lunar and Planetary Laboratory, University of Arizona

    Get PDF
    The roots of the Lunar and Planetary Laboratory (LPL) extend deep into the rich fabric of G. P. Kuiper's view of the Earth as a planet and planetary systems as expected companions to most stars, as well as the post-war emergent technology of infrared detectors suitable for astronomy. These concepts and events began with Kuiper's theoretical work at Yerkes Observatory on the origin of the Solar System, his discovery of two planetary satellites and observational work with his near-infrared spectrometer on the then-new McDonald 82-inch telescope in the mid- to late-1940s. A grant for the production of a photographic atlas of the Moon in the mid-1950s enabled him to assemble the best existing images of the Moon and acquire new photographs. This brought E. A. Whitaker and D. W. G. Arthur to Yerkes. Others who joined in the lunar work were geologist Carl S. Huzzen and grad student E. P. Moore, as well as undergrad summer students A. B. Binder and D. P. Cruikshank (both in 1958). The Atlas was published in 1959, and work began on an orthographic lunar atlas. Kuiper's view of planetary science as an interdisciplinary enterprise encompassing astronomy, geology, and atmospheric physics inspired his vision of a research institution and an academic curriculum tuned to the combination of all the scientific disciplines embraced in a comprehensive study of the planets. Arrangements were made with the University of Arizona (UA) to establish LPL in affiliation with the widely recognized Inst. of Atmospheric Physics. Kuiper moved to the UA in late 1960, taking the lunar experts, graduate student T. C. Owen (planetary atmospheres), and associate B. M. Middlehurst along. G. van Biesbroeck also joined the migration to Tucson; Binder and Cruikshank followed along as new grad students. Astronomy grad student W. K. Hartmann came into the academic program at UA and the research group at LPL in 1961. Senior faculty affiliating with LPL in the earliest years were T. Gehrels, A. B. Meinel, H. L. Johnson, and F. J. Low, each with their own grad students and associates. Work began on IR spectroscopy and a rectified lunar atlas. Kuiper and Johnson started the search for future observatory sites in N. America and Hawaii
    corecore