53 research outputs found

    Phylogenetic analysis of partial sequences of elongation factor 1 alpha identifies major groups of lice (Insecta : Phthiraptera)

    No full text
    As a first attempt to use molecular data to resolve the relationships between the four suborders of lice and within the suborder Ischnocera, we sequenced a 347-bp fragment of the elongation factor l alpha gene of 127 lice (Insecta: Phthiraptera) as well as outgroup taxa from the order Psocoptera. A number of well-supported monophyletic groups were found but the relationships among many of these groups could not be resolved. While it is probable that multiple substitutions at high divergences and ancient radiation over a short period of time have contributed to the problem, we attribute most of this lack of resolution to the high ratio of taxa to characters. Nevertheless, the sequence data unequivocally support a number of important relationships that are at variance with the conclusions of morphological taxonomy. These include the sister group relationship of Chelopistes and Oxylipeurus, two lice occupying different ecological niches on the same host, which have previously been assigned to different families. These results provide evidence in support of the hypothesis that lice have speciated in situ on the host in response to niche specialization and that this has given rise to convergent morphologies in the-lice: of different host groups which share similar ecological niches. We discuss our attempts to overcome the limitations of this large data set, including the use of leaf stability analysis, a new method for analyzing the stability of taxa in a phylogenetic tree, and examine a number of hypotheses of relationships based on both traditional taxonomy and host associations

    Phylogeny of "Philoceanus complex" seabird lice (Phthiraptera : Ischnocera) inferred from mitochondrial DNA sequences

    No full text
    The Philoceanus complex is a large assemblage of lice that parasitise procellariiform seabirds (petrels, albatrosses, and their relatives). We obtained mitochondrial 12S rRNA and cytochrome oxidase I DNA sequences from 39 species from diverse hosts and localities. Resolution of deeper relationships between genera was limited, however there is evidence for two major clades, one hosted by albatrosses, the other by petrels. Based on our results, the genera hosted by albatrosses are excellent candidates for detailed analysis of cospeciation. Our results also suggest that a previous estimate of a 5-fold difference in the relative rate of sequence evolution in lice and their avian hosts is an artefact of limited taxonomic sampling

    Blood, sweat and tears: a review of non-invasive DNA sampling

    Get PDF
    The use of DNA data is ubiquitous across animalsciences. DNA may be obtained from an organism for a myriad of reasonsincluding identification and distinction between cryptic species, sex identification, comparisons of different morphocryptic genotypes or assessments of relatedness between organisms prior to a behavioural study. DNA should be obtained while minimizing the impact on the fitness, behaviour or welfare of the subject being tested, as this can bias experimental results and cause long-lasting effects on wild animals. Furthermore, minimizing impact on experimental animals is a key Refinement principle within the '3Rs' framework which aims to ensure that animal welfare during experimentation is optimised. The term 'non-invasive DNA sampling' has been defined to indicate collection methods that do not require capture or cause disturbance to the animal, including any effects on behaviour or fitness. In practice this is not always the case, as the term 'non-invasive' is commonly used in the literature to describe studies where animals are restrained or subjected to aversive procedures. We reviewed the non-invasive DNA sampling literature for the past six years (380 papers published in 2013-2018) and uncovered the existence of a significant gap between the current use of this terminology (i.e. 'non-invasive DNA sampling') and its original definition. We show that 58% of the reviewed papers did not comply with the original definition. We discussthe main experimental and ethical issuessurrounding the potential confusion or misuse of the phrase 'non-invasive DNA sampling' in the current literature and provide potential solutions. In addition, we introduce the terms 'non-disruptive' and 'minimally disruptive' DNA sampling, to indicate methods that eliminate or minimise impacts not on the physical integrity/structure of the animal, but on its behaviour, fitness and welfare, which in the literature reviewed corresponds to the situation for which an accurate term is clearly missing. Furthermore, we outline when these methods are appropriate to use
    corecore