3,884 research outputs found

    Modelling the spread of Wolbachia in spatially heterogeneous environments

    Get PDF
    The endosymbiont Wolbachia infects a large number of insect species and is capable of rapid spread when introduced into a novel host population. The bacteria spread by manipulating their hosts' reproduction, and their dynamics are influenced by the demographic structure of the host population and patterns of contact between individuals. Reaction–diffusion models of the spatial spread of Wolbachia provide a simple analytical description of their spatial dynamics but do not account for significant details of host population dynamics. We develop a metapopulation model describing the spatial dynamics of Wolbachia in an age-structured host insect population regulated by juvenile density-dependent competition. The model produces similar dynamics to the reaction–diffusion model in the limiting case where the host's habitat quality is spatially homogeneous and Wolbachia has a small effect on host fitness. When habitat quality varies spatially, Wolbachia spread is usually much slower, and the conditions necessary for local invasion are strongly affected by immigration of insects from surrounding regions. Spread is most difficult when variation in habitat quality is spatially correlated. The results show that spatial variation in the density-dependent competition experienced by juvenile host insects can strongly affect the spread of Wolbachia infections, which is important to the use of Wolbachia to control insect vectors of human disease and other pests

    Vibration effects on heat transfer in cryogenic systems Quarterly progress report, Jul. 1 - Sep. 30, 1967

    Get PDF
    Water test apparatus used to determine vibration effects on heat transfer in cryogenic system

    Voter Model with Time dependent Flip-rates

    Full text link
    We introduce time variation in the flip-rates of the Voter Model. This type of generalisation is relevant to models of ageing in language change, allowing the representation of changes in speakers' learning rates over their lifetime and may be applied to any other similar model in which interaction rates at the microscopic level change with time. The mean time taken to reach consensus varies in a nontrivial way with the rate of change of the flip-rates, varying between bounds given by the mean consensus times for static homogeneous (the original Voter Model) and static heterogeneous flip-rates. By considering the mean time between interactions for each agent, we derive excellent estimates of the mean consensus times and exit probabilities for any time scale of flip-rate variation. The scaling of consensus times with population size on complex networks is correctly predicted, and is as would be expected for the ordinary voter model. Heterogeneity in the initial distribution of opinions has a strong effect, considerably reducing the mean time to consensus, while increasing the probability of survival of the opinion which initially occupies the most slowly changing agents. The mean times to reach consensus for different states are very different. An opinion originally held by the fastest changing agents has a smaller chance to succeed, and takes much longer to do so than an evenly distributed opinion.Comment: 16 pages, 6 figure

    Robustness and epistasis in mutation-selection models

    Full text link
    We investigate the fitness advantage associated with the robustness of a phenotype against deleterious mutations using deterministic mutation-selection models of quasispecies type equipped with a mesa shaped fitness landscape. We obtain analytic results for the robustness effect which become exact in the limit of infinite sequence length. Thereby, we are able to clarify a seeming contradiction between recent rigorous work and an earlier heuristic treatment based on a mapping to a Schr\"odinger equation. We exploit the quantum mechanical analogy to calculate a correction term for finite sequence lengths and verify our analytic results by numerical studies. In addition, we investigate the occurrence of an error threshold for a general class of epistatic landscape and show that diminishing epistasis is a necessary but not sufficient condition for error threshold behavior.Comment: 20 pages, 14 figure

    Evaluation and Application of Remotely Sensed Soil Moisture Products

    Get PDF
    Whereas in-situ measurements of soil moisture are very accurate, achieving accurate regional soil moisture estimates derived solely from point measurements is difficult because of the dependence upon the density of the gauge network and the proper upkeep of these instruments, which can be costly. Microwave remote sensing is the only technology capable of providing timely direct measurements of regional soil moisture in areas that are lacking in-situ networks. Soil moisture remote sensing technology is well established has been successfully applied in many fashions to Earth Science applications. Since the microwave emission from the soil surface has such a high dependency upon the moisture content within the soil, we can take advantage of this relationship and combined with physically-based models of the land surface, derive accurate regional estimates of the soil column water content from the microwave brightness temperature observed from satellite-based remote sensing instruments. However, there still remain many questions regarding the most efficient methodology for evaluating and applying satellite-based soil moisture estimates. As discussed below, we to use satellite-based estimates of soil moisture dynamics to improve the predictive capability of an optimized hydrologic model giving more accurate root-zone soil moisture estimates

    Information and (co-)variances in discrete evolutionary genetics involving solely selection

    Full text link
    The purpose of this Note is twofold: First, we introduce the general formalism of evolutionary genetics dynamics involving fitnesses, under both the deterministic and stochastic setups, and chiefly in discrete-time. In the process, we particularize it to a one-parameter model where only a selection parameter is unknown. Then and in a parallel manner, we discuss the estimation problems of the selection parameter based on a single-generation frequency distribution shift under both deterministic and stochastic evolutionary dynamics. In the stochastics, we consider both the celebrated Wright-Fisher and Moran models.Comment: a paraitre dans Journal of Statistical Mechanics: Theory and Application

    Exact Solution for the Time Evolution of Network Rewiring Models

    Full text link
    We consider the rewiring of a bipartite graph using a mixture of random and preferential attachment. The full mean field equations for the degree distribution and its generating function are given. The exact solution of these equations for all finite parameter values at any time is found in terms of standard functions. It is demonstrated that these solutions are an excellent fit to numerical simulations of the model. We discuss the relationship between our model and several others in the literature including examples of Urn, Backgammon, and Balls-in-Boxes models, the Watts and Strogatz rewiring problem and some models of zero range processes. Our model is also equivalent to those used in various applications including cultural transmission, family name and gene frequencies, glasses, and wealth distributions. Finally some Voter models and an example of a Minority game also show features described by our model.Comment: This version contains a few footnotes not in published Phys.Rev.E versio

    Generational research: between historical and sociological imaginations

    Get PDF
    This paper reflects on Julia Brannen’s contribution to the development of theory and methods for intergenerational research. The discussion is contextualised within a contemporary ‘turn to time’ within sociology, involving tensions and synergies between sociological and historical imagination. These questions are informed by a juxtaposition of Brannen’s four-generation study of family change and social historian Angela Davis’s exploration women and the family in England between 1945 and 2000. These two studies give rise to complementary findings, yet have distinctive orientations towards the status and treatment of sources, the role of geography in research design and limits of generalisatio

    Population genetics in compressible flows

    Full text link
    We study competition between two biological species advected by a compressible velocity field. Individuals are treated as discrete Lagrangian particles that reproduce or die in a density-dependent fashion. In the absence of a velocity field and fitness advantage, number fluctuations lead to a coarsening dynamics typical of the stochastic Fisher equation. We then study three examples of compressible advecting fields: a shell model of turbulence, a sinusoidal velocity field and a linear velocity sink. In all cases, advection leads to a striking drop in the fixation time, as well as a large reduction in the global carrying capacity. Despite localization on convergence zones, one species goes extinct much more rapidly than in well-mixed populations. For a weak harmonic potential, one finds a bimodal distribution of fixation times. The long-lived states in this case are demixed configurations with a single boundary, whose location depends on the fitness advantage.Comment: 10 pages, 5 figures, submitte

    Pressure-Tuned Collapse of the Mott-Like State in Ca_{n+1}Ru_nO_{3n+1} (n=1,2): Raman Spectroscopic Studies

    Full text link
    We report a Raman scattering study of the pressure-induced collapse of the Mott-like phases of Ca_3Ru_2O_7 (T_N=56 K) and Ca_2RuO_4 (T_N=110 K). The pressure-dependence of the phonon and two-magnon excitations in these materials indicate: (i) a pressure-induced collapse of the antiferromagnetic (AF) insulating phase above P* ~ 55 kbar in Ca_3Ru_2O_7 and P* ~ 5-10 kbar in Ca_2RuO_4, reflecting the importance of Ru-O octahedral distortions in stabilizing the AF insulating phase; and (ii) evidence for persistent AF correlations above the critical pressure of Ca_2RuO_4, suggestive of phase separation involving AF insulator and ferromagnetic metal phases.Comment: 3 figure
    corecore