4,295 research outputs found

    Special studies of AROD system concepts and designs

    Get PDF
    Signal processing techniques for range and range rate measurements in airborne range and orbit determinatio

    Renormalized parameters and perturbation theory for an n-channel Anderson model with Hund's rule coupling: Asymmetric case

    Full text link
    We explore the predictions of the renormalized perturbation theory for an n-channel Anderson model, both with and without Hund's rule coupling, in the regime away from particle-hole symmetry. For the model with n=2 we deduce the renormalized parameters from numerical renormalization group calculations, and plot them as a function of the occupation at the impurity site, nd. From these we deduce the spin, orbital and charge susceptibilities, Wilson ratios and quasiparticle density of states at T=0, in the different parameter regimes, which gives a comprehensive overview of the low energy behavior of the model. We compare the difference in Kondo behaviors at the points where nd=1 and nd=2. One unexpected feature of the results is the suppression of the charge susceptibility in the strong correlation regime over the occupation number range 1 <nd <3.Comment: 9 pages, 17 figure

    Fermi Liquids and the Luttinger Integral

    Get PDF
    The Luttinger Theorem, which relates the electron density to the volume of the Fermi surface in an itinerant electron system, is taken to be one of the essential features of a Fermi liquid. The microscopic derivation of this result depends on the vanishing of a certain integral, the Luttinger integral ILI_{\rm L}, which is also the basis of the Friedel sum rule for impurity models, relating the impurity occupation number to the scattering phase shift of the conduction electrons. It is known that non-zero values of ILI_{\rm L} with IL=±π/2I_{\rm L}=\pm\pi/2, occur in impurity models in phases with non-analytic low energy scattering, classified as singular Fermi liquids. Here we show the same values, IL=±π/2I_{\rm L}=\pm\pi/2, occur in an impurity model in phases with regular low energy Fermi liquid behavior. Consequently the Luttinger integral can be taken to characterize these phases, and the quantum critical points separating them interpreted as topological.Comment: 5 pages 7 figure

    Observation of a subgap density of states in superconductor-normal metal bilayers in the Cooper limit

    Full text link
    We present transport and tunneling measurements of Pb-Ag bilayers with thicknesses, dPbd_{Pb} and dAgd_{Ag}, that are much less than the superconducting coherence length. The transition temperature, TcT_c, and energy gap, Δ\Delta, in the tunneling Density of States (DOS) decrease exponentially with dAgd_{Ag} at fixed dPbd_{Pb}. Simultaneously, a DOS that increases linearly from the Fermi energy grows and fills nearly 40% of the gap as TcT_c is 1/10 of TcT_c of bulk Pb. This behavior suggests that a growing fraction of quasiparticles decouple from the superconductor as TcT_c goes to 0. The linear dependence is consistent with the quasiparticles becoming trapped on integrable trajectories in the metal layer.Comment: 5 pages and 4 figures. This version is just the same as the old version except that we try to cut the unnecessary white space in the figures and make the whole paper look more compac

    Transient Stability Simulation by Waveform Relaxation Methods

    Get PDF
    In this paper, a new methodology for power system dynamic response calculations is presented. The technique known as the waveform relaxation has been extensively used in transient analysis of VLSI circuits and it can take advantage of new architectures in computer systems such as parallel processors. The application in this paper is limited to swing equations of a large power system. Computational results are presented

    Phase diagram and critical points of a double quantum dot

    Full text link
    We apply a combination of numerical renormalization group (NRG) and renormalized perturbation theory (RPT) to a model of two quantum dots (impurities) described by two Anderson impurity models hybridized to their respective baths. The dots are coupled via a direct interaction U12U_{12} and an exchange interaction JJ. The model has two types of quantum critical points, one at J=JcJ=J_c to a local singlet state and one at U12=U12cU_{12}=U_{12}^c to a locally charge ordered state. The renormalized parameters which determine the low energy behavior are calculated from the NRG. The results confirm the values predicted from the RPT on the approach to the critical points, which can be expressed in terms of a single energy scale T∗T^* in all cases. This includes cases without particle-hole symmetry, and cases with asymmetry between the dots, where there is also a transition at J=JcJ=J_c. The results give a comprehensive quantitative picture of the behavior of the model in the low energy Fermi liquid regimes, and some of the conclusions regarding the emergence of a single energy scale may apply to a more general class of quantum critical points, such as those observed in some heavy fermion systems.Comment: 18 pages 31 figure
    • …
    corecore