76 research outputs found

    Spectral characteristics of DDPM streams and their application to all‐digital amplitude modulation

    Get PDF
    A new closed‐form expression of the spectral coefficients of the digital streams obtained by dyadic digital pulse modulation is presented and validated in this letter. The new expression provides in‐depth insight into the spectral properties of dyadic digital pulse modulation, revealing its applicability as an all‐digital bandpass amplitude modulation technique. Simulations and measurements on a proof‐of‐concept dyadic digital pulse modulation amplitude modulator prototype demonstrate the effectiveness of the approach

    Interference of Spread-Spectrum Modulated Disturbances on Digital Communication Channels

    Get PDF
    In this paper, the effects of random spread spectrum (SS) electromagnetic interference (EMI) on digital communications are addressed. For this purpose, the influence of EMI on a communication channel is described in the framework of information theory in terms of an equivalent channel capacity loss, which is analytically predicted and validated by experimental results. The EMI-induced channel capacity loss for non-modulated and SS-modulated interference generated by a switching-mode DC-DC power converter are then evaluated for different EMI and channel characteristics so that to compare different scenarios of practical interest

    A novel Digital OTA topology with 66-dB DC Gain and 12.3-kHz Bandwidth

    Get PDF
    The paper introduces an enhanced digital OTA topology which allows increasing the DC gain thanks to the adoption of an inverter-based output stage. Moreover, a new equivalent small-signal model is proposed which allows to simplify the circuit analysis and paves the way to new frequency compensation strategies. Designed using a 28-nm standard CMOS technology and working at 0.3-V power supply, post-layout simulations show a 66-dB gain and a 12.3-kHz gain bandwidth product while driving a 250-pF capacitive load. As compared to other ultra-low-voltage OTAs in literature, an increase of small and large signal performance, respect to area occupation, equal to 4.6X and 1.5X, respectively, is obtained

    Enabling fast power integrity transient analysis through parameterized small-signal macromodels

    Get PDF
    In this paper, we present an automated strategy for extracting behavioral small-signal macromodels of biased nonlinear circuit blocks. We discuss in detail the case study of a Low DropOut (LDO) voltage regulator, which is an essential part of the power distribution network in electronic systems. We derive a compact yet accurate surrogate model of the LDO, which enables fast transient power integrity simulations, including all parasitics due to the specific layout of the LDO realization. The model is parameterized through its DC input voltage and its output current and is thus available as a SPICE netlist. Numerical experiments show that a speedup up to 700X is achieved when replacing the extracted post-layout netlist with the surrogate model, with practically no loss in accuracy

    A 28 nm 368 fJ/cycle, 0.43%/V Supply Sensitivity, FLL based RC Oscillator Featuring Positive TC Only Resistors and ÎŁM Based Trimming

    Get PDF
    This Brief presents a process-scaling-friendly frequency-locked-loop (FLL)-based RC oscillator. It features an R-R-C frequency-to-voltage converter that entails resistors with only the same-sign temperature coefficients. Together with a low-leakage switched-capacitor resistor and a delta-sigma-modulator-based trimming, our 71.8-MHz RC oscillator in 28-nm CMOS achieves a frequency inaccuracy of 77.6 ppm/0C, a 0.43%/V supply sensitivity, and an 11-psrms period jitter. The energy efficiency is 368 fJ/cycle

    Monitoring of fish species in the Lamone river: distribution and morphometric measures of the populations.

    Get PDF
    Fish samplings were carried out monthly from spring to autumn during 2008, on the Lamone river and the Campigno stream by an electrofishing, in order to verify the presence of fish populations and the most common species represented. Barb, Barbus plebejus, Blageon, Leuciscus muticellus, Chub, Leuciscus cephalus, South European Nase, Chondrostoma genei were identified. A small population of Brown trout, Salmo trutta fario was also recognized. Barb is the most represented species in all the sites. The samplings highlight that Lamone river presented conditions suitable to fully guarantee the life of the fish populations

    breaking the boundaries between analogue and digital

    Get PDF
    Subject Editor Paolo Crovetti spotlight on future information processin

    Fast Simulation of Analog Circuit Blocks under Nonstationary Operating Conditions

    Get PDF
    This paper proposes a black-box behavioral modeling framework for analog circuit blocks operating under small-signal conditions around non-stationary operating points. Such variations may be induced either by changes in the loading conditions or by event-driven updates of the operating point for system performance optimization, e.g., to reduce power consumption. An extension of existing data-driven parameterized reduced-order modeling techniques is proposed that considers the time-varying bias components of the port signals as non-stationary parameters. These components are extracted at runtime by a lowpass filter and used to instantaneously update the matrices of the reduced-order state-space model realized as a SPICE netlist. Our main result is a formal proof of quadratic stability of such Linear Parameter Varying (LPV) models, enabled by imposing a specific model structure and representing the transfer function in a basis of positive functions whose elements constitute a partition of unity. The proposed quadratic stability conditions are easily enforced through a finite set of small-size Linear Matrix Inequalities (LMI), used as constraints during model construction. Numerical results on various circuit blocks including voltage regulators confirm that our approach not only ensures the model stability, but also provides speedup in runtime up to 2 orders of magnitude with respect to full transistor-level circuits

    The Effect of EMI Generated from Spread-Spectrum-Modulated SiC-Based Buck Converter on the G3-PLC Channel

    Get PDF
    6siPower line communication (PLC) is increasingly emerging as an important communication technology for the smart-grid environment. As PLC systems use the existing infrastructure, they are always exposed to conducted electromagnetic interference (EMI) from switching mode power converters, which need to be tightly controlled to meet EMC regulations and to ensure the proper operation of the PLC system. For this purpose, spread-spectrum modulation (SSM) techniques are widely adopted to decrease the amplitude of the generated EMI from the power converters so as to comply with EMC regulations. In this paper, the influence of a spread-spectrum-modulated SiC-based buck converter on the G3-PLC channel performance is described in terms of channel capacity reduction using the Shannon–Hartley equation. The experimental setup was implemented to emulate a specific coupling path between the power and communication circuits and the channel capacity reduction was evaluated by the Shannon–Hartley equation in several operating scenarios and compared with the measured frame error rate. Based on the obtained results, SSM provides the EMI spectral peak amplitude reduction required to pass the electromagnetic compatibility (EMC) tests, but results in increased EMI-induced channel capacity degradation and increased transmission error rate in PLC systems.openopenWaseem El Sayed; Piotr Lezynski; Robert Smolenski; Niek Moonen; Paolo Crovetti; Dave W. P. ThomasEl Sayed, Waseem; Lezynski, Piotr; Smolenski, Robert; Moonen, Niek; Crovetti, PAOLO STEFANO; Thomas, Dave W. P
    • 

    corecore