4,953 research outputs found
Coal-rock interface detector
A coal-rock interface detector is presented which employs a radioactive source and radiation sensor. The source and sensor are separately and independently suspended and positioned against a mine surface of hydraulic pistons, which are biased from an air cushioned source of pressurized hydraulic fluid
Computations involving differential operators and their actions on functions
The algorithms derived by Grossmann and Larson (1989) are further developed for rewriting expressions involving differential operators. The differential operators involved arise in the local analysis of nonlinear dynamical systems. These algorithms are extended in two different directions: the algorithms are generalized so that they apply to differential operators on groups and the data structures and algorithms are developed to compute symbolically the action of differential operators on functions. Both of these generalizations are needed for applications
An almost Poisson structure for the generalized rigid body equations
In this paper we introduce almost Poisson structures on Lie groups which
generalize Poisson structures based on the use of the classical Yang-Baxter identity.
Almost Poisson structures fail to be Poisson structures in the sense that they do
not satisfy the Jacobi identity.In the case of cross products of Lie groups, we show
that an almost Poisson structure can be used to derive a system which is intimately
related to a fundamental Hamiltonian integrable system — the generalized rigid body
equations
Eimeria tenella protein trafficking: differential regulation of secretion versus surface tethering during the life cycle
Eimeria spp. are intracellular parasites that have a major impact on poultry. Effective live vaccines are available and the development of reverse genetic technologies has raised the prospect of using Eimeria spp. as recombinant vectors to express additional immunoprotective antigens. To study the ability of Eimeria to secrete foreign antigens or display them on the surface of the sporozoite, transiently transfected populations of E. tenella expressing the fluorescent protein mCherry, linked to endogenous signal peptide (SP) and glycophosphatidylinositol-anchor (GPI) sequences, were examined. The SP from microneme protein EtMIC2 (SP2) allowed efficient trafficking of mCherry to cytoplasmic vesicles and following the C-terminal addition of a GPI-anchor (from surface antigen EtSAG1) mCherry was expressed on the sporozoite surface. In stable transgenic populations, mCherry fused to SP2 was secreted into the sporocyst cavity of the oocysts and after excystation, secretion was detected in culture supernatants but not into the parasitophorous vacuole after invasion. When the GPI was incorporated, mCherry was observed on the sporozites surface and in the supernatant of invading sporozoites. The proven secretion and surface exposure of mCherry suggests that antigen fusions with SP2 and GPI of EtSAG1 may be promising candidates to examine induction of protective immunity against heterologous pathogens
An Optimal Control Formulation for Inviscid Incompressible Ideal Fluid Flow
In this paper we consider the Hamiltonian formulation of the equations of
incompressible ideal fluid flow from the point of view of optimal control
theory. The equations are compared to the finite symmetric rigid body equations
analyzed earlier by the authors. We discuss various aspects of the Hamiltonian
structure of the Euler equations and show in particular that the optimal
control approach leads to a standard formulation of the Euler equations -- the
so-called impulse equations in their Lagrangian form. We discuss various other
aspects of the Euler equations from a pedagogical point of view. We show that
the Hamiltonian in the maximum principle is given by the pairing of the
Eulerian impulse density with the velocity. We provide a comparative discussion
of the flow equations in their Eulerian and Lagrangian form and describe how
these forms occur naturally in the context of optimal control. We demonstrate
that the extremal equations corresponding to the optimal control problem for
the flow have a natural canonical symplectic structure.Comment: 6 pages, no figures. To appear in Proceedings of the 39th IEEEE
Conference on Decision and Contro
Improved test methods for determining lightning-induced voltages in aircraft
A lumped parameter transmission line with a surge impedance matching that of the aircraft and its return lines was evaluated as a replacement for earlier current generators. Various test circuit parameters were evaluated using a 1/10 scale relative geometric model. Induced voltage response was evaluated by taking measurements on the NASA-Dryden Digital Fly by Wire F-8 aircraft. Return conductor arrangements as well as other circuit changes were also evaluated, with all induced voltage measurements being made on the same circuit for comparison purposes. The lumped parameter transmission line generates a concave front current wave with the peak di/dt near the peak of the current wave which is more representative of lightning. However, the induced voltage measurements when scaled by appropriate scale factors (peak current or di/dt) resulting from both techniques yield comparable results
Viral proteins expressed in the protozoan parasite Eimeria tenella are detected by the chicken immune system
BACKGROUND: Eimeria species are parasitic protozoa that cause coccidiosis, an intestinal disease commonly characterised by malabsorption, diarrhoea and haemorrhage that is particularly important in chickens. Vaccination against chicken coccidiosis is effective using wild-type or attenuated live parasite lines. The development of protocols to express foreign proteins in Eimeria species has opened up the possibility of using Eimeria live vaccines to deliver heterologous antigens and function as multivalent vaccine vectors that could protect chickens against a range of pathogens. RESULTS: In this study, genetic complementation was used to express immunoprotective virus antigens in Eimeria tenella. Infectious bursal disease virus (IBDV) causes Gumboro, an immunosuppressive disease that affects productivity and can interfere with the efficacy of poultry vaccination programmes. Infectious laryngotracheitis virus (ILTV) causes a highly transmissible respiratory disease for which strong cellular immunity and antibody responses are required for effective vaccination. Genes encoding the VP2 protein from a very virulent strain of IBDV (vvVP2) and glycoprotein I from ILTV (gI) were cloned downstream of 5’Et-Actin or 5’Et-TIF promoter regions in plasmids that also contained a mCitrine fluorescent reporter cassette under control of the 5’Et-MIC1 promoter. The plasmids were introduced by nucleofection into E. tenella sporozoites, which were then used to infect chickens. Progeny oocysts were sorted by FACS and passaged several times in vivo until the proportion of fluorescent parasites in each transgenic population reached ~20 % and the number of transgene copies per parasite genome decreased to < 10. All populations were found to transcribe and express the transgene and induced the generation of low titre, transgene-specific antibodies when used to immunise chickens. CONCLUSIONS: E. tenella can express antigens of other poultry pathogens that are successfully recognised by the chicken immune system. Nonetheless, further work has to be done in order to improve the levels of expression for its future use as a multivalent vaccine vector. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-016-1756-2) contains supplementary material, which is available to authorized users
Teaching the Grid: Learning Distributed Computing with the M-grid Framework
A classic challenge within Computer Science is to distribute data and processes so as to take advantage of multiple computers tackling a single problem in a simultaneous and coordinated way. This situation arises in a number of different scenarios, including Grid computing which is a secure, service-based architecture for tackling massively parallel problems and creating virtual organizations. Although the Grid seems destined to be an important part of the future computing landscape, it is very difficult to learn how to use as real Grid software requires extensive setting up and complex security processes. M-grid mimics the core features of the Grid, in a much simpler way, enabling the rapid prototyping of distributed applications. We describe m-grid and explore how it may be used to teach foundation Grid computing skills at the Higher Education level and report some of our experiences of deploying it as an exercise within a programming course
- …
