8 research outputs found

    Graphene-based Josephson junction single photon detector

    Full text link
    We propose to use graphene-based Josephson junctions (gJjs) to detect single photons in a wide electromagnetic spectrum from visible to radio frequencies. Our approach takes advantage of the exceptionally low electronic heat capacity of monolayer graphene and its constricted thermal conductance to its phonon degrees of freedom. Such a system could provide high sensitivity photon detection required for research areas including quantum information processing and radio-astronomy. As an example, we present our device concepts for gJj single photon detectors in both the microwave and infrared regimes. The dark count rate and intrinsic quantum efficiency are computed based on parameters from a measured gJj, demonstrating feasibility within existing technologies.Comment: 11 pages, 6 figures, and 1 table in the main tex

    Development of high frequency and wide bandwidth Johnson noise thermometry

    Get PDF
    We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T similar to 4) deviation from the Wiedemann-Franz law above T similar to 100 K. (C) 2015 AIP Publishing LLCclose

    Guided Modes of Anisotropic van der Waals Materials Investigated by near-Field Scanning Optical Microscopy

    No full text
    Guided modes in nanometer thick anisotropic van der Waals materials are experimentally investigated and their refractive indices in visible wavelengths are extracted. Our method involves near-field scanning optical microscopy of waveguide (transverse electric) and surface plasmon polariton (transverse magnetic) modes in h-BN/SiO<sub>2</sub>/Si and Ag/h-BN stacks, respectively. We determine the dispersion of these modes and use this relationship to extract anisotropic refractive indices of h-BN flakes. In the wavelength interval 550–700 nm, the in-plane and out-of-plane refractive indices are in the range 1.98–2.12 and 1.45–2.12, respectively. Our approach of using near-field scanning optical microscopy allows for the direct study of the interaction between light and two-dimensional van der Waals materials and heterostructures
    corecore