57 research outputs found

    Relationships Between Giant Sea Salt Particles and Clouds Inferred from Aircraft Physicochemical Data

    Get PDF
    This study uses airborne data from multiple field campaigns off the California coast to determine the extent to which a size distribution parameter and a cloud water chemical measurement can capture the effect of giant cloud condensation nuclei (GCCN), specifically sea salt, on marine stratocumulus cloud properties. The two GCCN proxy variables, near-surface particle number concentration for diameters > 5 µm and cloud water chloride concentration, are significantly correlated (95% confidence) with each other, and both exhibit expected relationships with other parameters (e.g., surface wind) that typically coincide with sea salt emissions. Factors influencing the relationship between these two GCCN proxy measurements include precipitation rate (R) and the standard deviation of the sub-cloud vertical velocity owing likely to scavenging effects and improved mixing/transport of sea salt to cloud base, respectively. When comparing twelve pairs of high and low chloride cloud cases (at fixed liquid water path and cloud drop number concentration), the average drop spectra for high chloride cases exhibit enhanced drop number at diameters exceeding 20 µm, especially above 30 µm. In addition, high chloride cases coincide with enhanced mean columnar R and negative values of precipitation susceptibility. The difference in drop effective radius between high and low chloride conditions decreases with height in cloud, suggesting that some GCCN-produced rain drops precipitate before reaching cloud tops. The sign of cloud responses (i.e., R) to perturbations in giant sea salt particle concentration, as evaluated from MERRA-2 reanalysis data, is consistent with the aircraft data

    Cloud Adiabaticity and Its Relationship to Marine Stratocumulus Characteristics Over the Northeast Pacific Ocean

    Get PDF
    Cloud adiabaticity (α) is defined as the ratio of the actual liquid water path (LWP_(measured)) in a cloud to its corresponding adiabatic value (LWP_(ad)). Processes such as drizzle and entrainment can lead to subadiabatic LWP_(measured). This study examines α and its relationship to microphysical properties for 86 cloud events over the Northeast Pacific Ocean based on data collected during four separate summertime airborne campaigns. For the study region, α was found to be 0.766 ± 0.134. For most cases, clouds with a low value of α were found to have lower droplet number concentration (N_d), higher droplet effective radius (r_e), higher relative dispersion (d), and higher rain rate (R). The subcloud aerosol concentration (N_a) was often less for the low‐α cases. The relationship between α and the vertical profiles and cloud‐top characteristics for both the cloud droplet‐only spectrum and full spectrum (cloud and rain droplets) is also examined. Inclusion of rain droplets produced a larger change in d for the low‐α clouds as compared to the high‐α clouds. On average, R increased at cloud top for high‐α clouds but decreased at cloud top for low‐α clouds. Accounting for α when estimating N_d from Moderate Resolution Imaging Spectroradiometer retrievals results in better agreement with in situ N_d values. Results of this work motivate the need for additional focus on the factors governing α, such as cloud type, and implications of its value, especially for remote‐sensing retrievals

    On the relationship between cloud water composition and cloud droplet number concentration

    Get PDF
    Aerosol–cloud interactions are the largest source of uncertainty in quantifying anthropogenic radiative forcing. The large uncertainty is, in part, due to the difficulty of predicting cloud microphysical parameters, such as the cloud droplet number concentration (N_d). Even though rigorous first-principle approaches exist to calculate Nd, the cloud and aerosol research community also relies on empirical approaches such as relating N_d to aerosol mass concentration. Here we analyze relationships between Nd and cloud water chemical composition, in addition to the effect of environmental factors on the degree of the relationships. Warm, marine, stratocumulus clouds off the California coast were sampled throughout four summer campaigns between 2011 and 2016. A total of 385 cloud water samples were collected and analyzed for 80 chemical species. Single- and multispecies log–log linear regressions were performed to predict N_d using chemical composition. Single-species regressions reveal that the species that best predicts N_d is total sulfate (R²_(adj) = 0.40). Multispecies regressions reveal that adding more species does not necessarily produce a better model, as six or more species yield regressions that are statistically insignificant. A commonality among the multispecies regressions that produce the highest correlation with N_d was that most included sulfate (either total or non-sea-salt), an ocean emissions tracer (such as sodium), and an organic tracer (such as oxalate). Binning the data according to turbulence, smoke influence, and in-cloud height allowed for examination of the effect of these environmental factors on the composition–Nd correlation. Accounting for turbulence, quantified as the standard deviation of vertical wind speed, showed that the correlation between N_d with both total sulfate and sodium increased at higher turbulence conditions, consistent with turbulence promoting the mixing between ocean surface and cloud base. Considering the influence of smoke significantly improved the correlation with N_d for two biomass burning tracer species in the study region, specifically oxalate and iron. When binning by in-cloud height, non-sea-salt sulfate and sodium correlated best with Nd at cloud top, whereas iron and oxalate correlated best with N_d at cloud base

    Stratocumulus Cloud Clearings and Notable Thermodynamic and Aerosol Contrasts across the Clear–Cloudy Interface

    Get PDF
    Data from three research flights, conducted over water near the California coast, are used to investigate the boundary between stratocumulus cloud decks and clearings of different sizes. Large clearings exhibit a diurnal cycle with growth during the day and contraction overnight and a multiday life cycle that can include oscillations between growth and decay, whereas a small coastal clearing was observed to be locally confined with a subdiurnal lifetime. Subcloud aerosol characteristics are similar on both sides of the clear–cloudy boundary in the three cases, while meteorological properties exhibit subtle, yet important, gradients, implying that dynamics, and not microphysics, is the primary driver for the clearing characteristics. Transects, made at multiple levels across the cloud boundary during one flight, highlight the importance of microscale (~1 km) structure in thermodynamic properties near the cloud edge, suggesting that dynamic forcing at length scales comparable to the convective eddy scale may be influential to the larger-scale characteristics of the clearing. These results have implications for modeling and observational studies of marine boundary layer clouds, especially in relation to aerosol–cloud interactions and scales of variability responsible for the evolution of stratocumulus clearings

    Effects of Biomass Burning on Stratocumulus Droplet Characteristics, Drizzle Rate, and Composition

    Get PDF
    This study reports on airborne measurements of stratocumulus cloud properties under varying degrees of influence from biomass burning (BB) plumes off the California coast. Data are reported from five total airborne campaigns based in Marina, California, with two of them including influence from wildfires in different areas along the coast of the western United States. The results indicate that subcloud cloud condensation nuclei number concentration and mass concentrations of important aerosol species (organics, sulfate, nitrate) were better correlated with cloud droplet number concentration (N_d) as compared to respective above‐cloud aerosol data. Given that the majority of BB particles resided above cloud tops, this is an important consideration for future work in the region as the data indicate that the subcloud BB particles likely were entrained from the free troposphere. Lower cloud condensation nuclei activation fractions were observed for BB‐impacted clouds as compared to non‐BB clouds due, at least partly, to less hygroscopic aerosols. Relationships between N_d and either droplet effective radius or drizzle rate are preserved regardless of BB influence, indicative of how parameterizations can exhibit consistent skill for varying degrees of BB influence as long as N_d is known. Lastly, the composition of both droplet residual particles and cloud water changed significantly when clouds were impacted by BB plumes, with differences observed for different fire sources stemming largely from effects of plume aging time and dust influence

    Aircraft-Engine Particulate Matter Emissions from Conventional and Sustainable Aviation Fuel Combustion: Comparison of Measurement Techniques for Mass, Number, and Size

    Get PDF
    Sustainable aviation fuels (SAFs) have different compositions compared to conventional petroleum jet fuels, particularly in terms of fuel sulfur and hydrocarbon content. These differences may change the amount and physicochemical properties of volatile and non-volatile particulate matter (nvPM) emitted by aircraft engines. In this study, we evaluate whether comparable nvPM measurement techniques respond similarly to nvPM produced by three blends of SAFs compared to three conventional fuels. Multiple SAF blends and conventional (Jet A-1) jet fuels were combusted in a V2527-A5 engine, while an additional conventional fuel (JP-8) was combusted in a CFM56-2C1 engine. We evaluated nvPM mass concentration measured by three real-Time measurement techniques: photoacoustic spectroscopy, laser-induced incandescence, and the extinction-minus-scattering technique. Various commercial instruments were tested, including three laser-induced incandescence (LII) 300s, one photoacoustic extinctiometer (PAX), one micro soot sensor (MSS+), and two cavity-Attenuated phase shift PMSSA (CAPS PMSSA) instruments. Mass-based emission indices (EIm) reported by these techniques were similar, falling within 30ĝ€¯% of their geometric mean for EIm above 100ĝ€¯mg per kg fuel (approximately 10ĝ€¯μgĝ€¯PMĝ€¯m-3 at the instrument); this geometric mean was therefore used as a reference value. Additionally, two integrative measurement techniques were evaluated: filter photometry and particle size distribution (PSD) integration. The commercial instruments used were one tricolor absorption photometer (TAP), one particle soot absorption photometer (PSAP), and two scanning mobility particle sizers (SMPSs). The TAP and PSAP were operated at 5ĝ€¯% and 10ĝ€¯% of their nominal flow rates, respectively, to extend the life of their filters. These techniques are used in specific applications, such as on board research aircraft to determine particulate matter (PM) emissions at cruise. EIm reported by the alternative techniques fell within approximately 50ĝ€¯% of the mean aerosol-phase EIm. In addition, we measured PM-number-based emission indices using PSDs and condensation particle counters (CPCs). The commercial instruments used included TSI SMPSs, a Cambustion differential mobility spectrometer (DMS500), and an AVL particle counter (APC), and the data also fell within approximately 50ĝ€¯% of their geometric mean. The number-based emission indices were highly sensitive to the accuracy of the sampling-line penetration functions applied as corrections. In contrast, the EIm data were less sensitive to those corrections since a smaller volume fraction fell within the size range where corrections were substantial. A separate, dedicated experiment also showed that the operating laser fluence used in the LII 300 laser-induced incandescence instrument for aircraft-engine nvPM measurement is adequate for a range of SAF blends investigated in this study. Overall, we conclude that all tested instruments are suitable for the measurement of nvPM emissions from the combustion of SAF blends in aircraft engines

    Aircraft Engine Particulate Matter Emissions from Sustainable Aviation Fuels: Results from Ground-Based Measurements during the NASA/DLR Campaign ECLIF2/ND-MAX

    Get PDF
    The use of alternative jet fuels by commercial aviation has increased substantially in recent years. Beside the reduction of carbon dioxide emission, the use of sustainable aviation fuels (SAF) may have a positive impact on the reduction of particulate emissions. This study summarizes the results from a ground-based measurement activity conducted in January 2018 as part of the ECLIF2/ND-MAX campaign in Ramstein, Germany. Two fossil reference kerosenes and three different blends with the renewable fuel component HEFA-SPK (Hydroprocessed Esters and Fatty Acids Synthetic Paraffinic Kerosene) were burned in an A320 with V2527-A5 engines to investigate the effect of fuel naphthalene/aromatic content and the corresponding fuel hydrogen content on non-volatile particle number and mass emissions. Reductions up to 70% in non-volatile particle mass emission compared to the fossil reference fuel were observed at low power settings. The reduction trends to decrease with increasing power settings. The fuels showed a decrease in particle emission with increasing fuel hydrogen content. Consequently, a second fossil fuel with similar hydrogen content as one of the HEFA blends featured similar reduction factors in particle mass and number. Changes in the fuel naphthalene content had significant impact on the particle number emission. A comparison to in-flight emission data shows similar trends at cruise altitudes. The measurements highlight the importance of individual fuel components in regulating engine emissions, particularly at the low thrust settings typically employed during ground operations (e.g. during idle and taxi). Therefore, when selecting and mixing SAF blends to meet present fuel-certification standards, attention should be paid to minimizing complex aromatic content to achieve the greatest possible air quality and climate benefits
    corecore