2 research outputs found

    Early Activation Of P160rock By Pressure Overload In Rat Heart

    No full text
    We investigated the effects of acute pressure overload on activation of p160ROCK in rat myocardium. Constriction of transverse aorta, controlled to increase peak systolic pressure of ascending aorta by -40 mmHg, induced a rapid association of RhoA with Dbl-3 and p160ROCK. The binding of p160ROCK to RhoA was rapidly increased, peaking at 30 min (∼3.5-fold), but reduced to lower levels (∼1.9-fold) by 60 min of pressure overload. The activity of immunoprecipitated p160ROCK toward myosin light chain increased ∼2.5-fold within 10 min but decreased to lower levels (∼1.6-fold) after 60 min of pressure overload. Confocal microscopic analysis indicated that pressure overload induced the formation of aggregates of p160ROCK and RhoA along the longitudinal axis of cardiac myocytes. Immunoelectron microscopic analysis showed that pressure overload induced the association of p160ROCK and RhoA to Z-line, T-tubule, and subsarcolemmal areas. The rapid activation of p160ROCK by pressure overload and its aggregation in subcellular structures involved in transmission of mechanical force suggest a role for this enzyme in the mechanobiochemical transduction in the myocardium.2846 53-6C1411C1419Aikawa, R., Komuro, I., Yamazaki, T., Zou, Y., Kudoh, S., Zhu, W., Kadowaki, T., Yazaki, Y., Rho family small G proteins play critical roles in mechanical stress-induced hypertrophic responses in cardiac myocytes (1999) Circ Res, 84, pp. 458-466Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., Matsuura, Y., Kaibuchi, K., Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase) (1996) J Biol Chem, 271, pp. 20246-21249Burridge, K., Chrzanowska-Wodnicka, M., Focal adhesions, contractility, and signalling (1996) Annu Rev Cell Dev Biol, 12, pp. 463-519Burridge, K., Turner, C.E., Romer, L.H., Tyrosine phosphorylation of paxillin and pp125 FAK accompanies cell adhesion to extracellular matrix: A role in cytoskeletal assembly (1992) J Cell Biol, 119, pp. 893-903Clerk, A., Sugden, P.H., Small guanine nucleotide-binding proteins and myocardial hypertrophy (2000) Circ Res, 86, pp. 1019-1023Cooper, G., Basic determinants of myocardial hypertrophy: A review of molecular mechanisms (1997) Annu Rev Med, 48, pp. 13-23Domingos, P.P., Fonseca, P.M., Nadruz W., Jr., Franchini, K.G., Load-induced focal adhesion kinase activation in the myocardium: Role of stretch and contractile activity (2002) Am J Physiol Heart Circ Physiol, 282, pp. H556-H564Franchini, K.G., Torsoni, A.S., Soares, P.H., Saad, M.J.A., Early activation of the multicomponent signaling complex associated with focal adhesion kinase induced by pressure overload in the rat heart (2000) Circ Res, 87, pp. 558-565Fujita, A., Yuji, S., Toshimasa, I., Midori, M., Kazuko, F., Fumitaka, U., Shuh, N., Integrin-dependent translocation of p160ROCK to cytoskeletal complex in thrombin stimulated human platelets (1997) Biochem J, 328, pp. 769-775Giancotti, F.G., Ruoslahti, E., Integrin signaling (1999) Science, 285, pp. 1028-1032Hall, A., Rho GTPases and the actin cytoskeleton (1998) Science, 279, pp. 509-514Hoshijima, M., Sah, V.P., Wang, Y., Chien, K.R., Brown, J.H., The low molecular weight GTPase Rho regulates myofibril formation and organization in neonatal rat ventricular myocytes: Involvement of Rho kinase (1998) J Biol Chem, 273, pp. 7725-7730Ingber, D., Tensegrity: The architectural basis of cellular mechano-transduction (1997) Annu Rev Physiol, 59, pp. 575-599Ishizaki, T., Maekawa, M., Fujisawa, K., Okawa, K., Iwamatsu, A., Fujita, A., Watanabe, N., Narumiya, S., The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase (1996) EMBO J, 15, pp. 1885-1893Kaibuchi, K., Kuroda, S., Amano, M., Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells (1999) Annu Rev Biochem, 68, pp. 459-486Kaye, D., Pimental, D., Prasad, S., Mäki, T., Berger, H.J., McNeil, P.L., Smith, T.W., Kelly, R.A., Role of transient sarcolemmal membrane permeability and basic fibroblast growth factor release in the hypertrophic response of adult rat ventricular myocytes to increased mechanical activity in vitro (1996) J Clin Invest, 97, pp. 281-291Kent, R.L., Hoober, J.K., Cooper, G., Load responsiveness of protein synthesis in adult mammalian myocardium: Role of cardiac deformation linked to sodium influx (1989) Circ Res, 64, pp. 74-85Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., Yamamori, B., Kaibuchi, K., Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase) (1996) Science, 273, pp. 245-248Kuwahara, K., Saito, Y., Nakagawa, O., Kishimoto, I., Harada, M., Ogawa, E., Miyamoto, Y., Nakao, K., The effects of the selective ROCK inhibitor, Y27632, on ET-1-induced hypertrophic response in neonatal rat cardiac myocytes - Possible involvement of Rho/ROCK pathway in cardiac muscle cell hypertrophy (1999) FEBS Lett, 452, pp. 314-318Maekawa, M., Ishizaki, T., Boku, S., Watanabe, N., Fujita, A., Iwamatsu, A., Obinata, T., Narumiya, S., Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase (1999) Science, 285, pp. 895-898Maniotis, A.J., Chen, C.S., Ingber, D.E., Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure (1997) Proc Natl Acad Sci USA, 94, pp. 849-854Morissette, M.R., Sah, V.P., Glembotski, C.C., Brown, J.H., The Rho effector, PKN, regulates ANF gene transcription in cardiomyocytes through a serum response element (2000) Am J Physiol Heart Circ Physiol, 278, pp. H1769-H1774Nakano, K., Takaishi, K., Kodama, A., Mammoto, A., Shiozaki, H., Monden, M., Takai, Y., Distinct actions and cooperative roles of ROCK and mDia in Rho small G protein-induced reorganization of the actin cytoskeleton in Madin-Darby canine kidney cells (1999) Mol Biol Cell, 10, pp. 2481-2491Olivo, C., Vanni, C., Mancini, P., Silengo, L., Torrisi, M.R., Tarone, G., Defilippi, P., Eva, A., Distinct involvement of cdc 42 and RhoA GTPases in actin organization and cell shape in untransformed and Dbl oncogene transformed NIH3T3 cells (2000) Oncogene, 19, pp. 1428-1436Polte, T.R., Naftilan, A.J., Hanks, S.K., Focal adhesion kinase is abundant in developing blood vessels and elevation of its phosphotyrosine content in vascular smooth muscle cells is a rapid response to angiotensin II (1994) J Cell Biochem, 55, pp. 106-119Quang, C.T., Gautreau, A., Arpin, M., Treisman, R., Ezrin function is required for ROCK-mediated fibroblast transformation by the Net and Dbl oncogenes (2000) EMBO J, 19, pp. 4565-4576Rankin, S., Morii, N., Narumiya, S., Rozengurt, E., Botulinum C3 exoenzyme blocks the tyrosine phosphorylation of p125FAK and paxillin induced by bombesin and endothelin (1994) FEBS Lett, 354, pp. 315-319Romer, L.H., McLean, N., Turner, C.E., Burridge, K., Tyrosine kinase activity, cytoskeletal organization, and motility in human vascular endothelial cells (1994) Mol Biol Cell, 5, pp. 349-361Sadoshima, J.I., Xu, Y., Slayter, H.S., Izumo, S., Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro (1993) Cell, 75, pp. 977-984Sah, V.P., Seasholtz, T.M., Sagi, S.A., Brown, J.H., The role of Rho in G protein-coupled receptor signal transduction (2000) Annu Rev Pharmacol Toxicol, 40, pp. 459-489Suematsu, N., Satoh, S., Kinugawa, S., Tsutsui, H., Hayashidani, S., Nakamura, R., Egashira, K., Takeshita, A., α1-Adrenoceptor-Gq-RhoA signaling is upregulated to increase myofibrillar Ca2+ sensitivity in failing hearts (2001) Am J Physiol Heart Circ Physiol, 281, pp. H637-H646Sugden, P.H., Clerk, A., "Stress-responsive" mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium (1998) Circ Res, 83, pp. 345-352Sumi, T., Matsumoto, K., Nakamura, T., Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase (2001) J Biol Chem, 276, pp. 670-676Totsukawa, G., Yamakita, Y., Yamashiro, S., Hartshorne, D.J., Sasaki, Y., Matsumura, F., Distinct roles of ROCK (RhoKinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3t3 fibroblasts (2000) J Cell Biol, 150, pp. 797-806Wei, L., Wang, L., Carson, J.A., Agan, J.E., Imanaka-Yoshida, K., Schwarts, R.J., Beta-1 integrin and organized actin filaments facilitate cardiomyocyte-specific RhoA-dependent activation of the skeletal alpha-actin promoter (2001) FASEB J, 15, pp. 785-796Yanazume, T., Hasegawa, K., Wada, H., Morimoto, T., Abe, M., Kawamura, T., Sasayama, S., Rho/ROCK pathway contributes to the activation of extracellular signal-regulated kinase/GATA-4 during myocardial cell hypertrophy (2002) J Biol Chem, 277, pp. 8618-8625Yang, J., Drazba, J.A., Fergunson, D.G., Bond, M., A-kinase anchoring protein 100 (AKAP100) is localized in multiple sub-cellular compartments in the adult rat heart (1998) J Cell Biol, 142, pp. 511-52

    Arhgap21 Associates With Fak And Pkcζ And Is Redistributed After Cardiac Pressure Overload

    No full text
    ARHGAP21 is highly expressed in the heart, which demonstrates activity over Cdc42 and interacts with proteins of the cytoskeleton and adherent junctions. The main cause of cardiac hypertrophy is mechanical stimulus; therefore we analyzed ARHGAP21 expression after acute mechanical stress in the myocardium and its association with FAK and PKCζ. We demonstrated that ARHGAP21 is relocated to Z-lines and costameres after pressure overload, and interacts with PKCζ and FAK in control rats (sham), rats submitted to aortic clamping and spontaneously hypertensive rats (SHR). Co-transfection using ARHGAP21 and PKCζ constructions demonstrated that ARHGAP21 associates with PKCζ-GST and endogenous FAK. Pulldown assay showed that ARHGAP21 binds to the C-terminal region of FAK. Moreover, ARHGAP21 binds to PKCζ phosphorylated on Thr410 in sham and SHR. However, ARHGAP21 only binds to FAK phosphorylated on Tyr925 of SHR. Additionally, PKCζ is phosphorylated by mechanical stimuli. These results suggest that ARHGAP21 may act as a signaling or scaffold protein of FAK and PKCζ signaling pathways, developing an important function during cardiac stress. © 2008 Elsevier Inc. All rights reserved.3744641646Basseres, D.S., Tizzei, E.V., Duarte, A.A., Costa, F.F., Saad, S.T., ARHGAP10, a novel human gene coding for a potentially cytoskeletal Rho-GTPase activating protein (2002) Biochem. Biophys. Res. Commun., 294, pp. 579-585Brown, J.H., Del Re, D.P., Sussman, M.A., The Rac and Rho hall of fame: a decade of hypertrophic signaling hits (2006) Circ. Res., 98, pp. 730-742Nagai, T., Tanaka-Ishikawa, M., Aikawa, R., Ishihara, H., Zhu, W., Yazaki, Y., Nagai, R., Komuro, I., Cdc42 plays a critical role in assembly of sarcomere units in series of cardiac myocytes (2003) Biochem. Biophys. Res. Commun., 305, pp. 806-810Dubois, T., Paleotti, O., Mironov, A.A., Fraisier, V., Stradal, T.E., De Matteis, M.A., Franco, M., Chavrier, P., Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics (2005) Nat. Cell Biol., 7, pp. 353-364Sousa, S., Cabanes, D., Archambaud, C., Colland, F., Lemichez, E., Popoff, M., Boisson-Dupuis, S., Cossart, P., ARHGAP10 is necessary for alpha-catenin recruitment at adherens junctions and for Listeria invasion (2005) Nat. Cell Biol., 7, pp. 954-960Tarone, G., Lembo, G., Molecular interplay between mechanical and humoral signalling in cardiac hypertrophy (2003) Trends Mol. Med., 9, pp. 376-382Yi, X.P., Wang, X., Gerdes, A.M., Li, F., Subcellular redistribution of focal adhesion kinase and its related nonkinase in hypertrophic myocardium (2003) Hypertension, 41, pp. 1317-1323Fonseca, P.M., Inoue, R.Y., Kobarg, C.B., Crosara-Alberto, D.P., Kobarg, J., Franchini, K.G., Targeting to C-terminal myosin heavy chain may explain mechanotransduction involving focal adhesion kinase in cardiac myocytes (2005) Circ. Res., 96, pp. 73-81Heidkamp, M.C., Bayer, A.L., Kalina, J.A., Eble, D.M., Samarel, A.M., GFP-FRNK disrupts focal adhesions and induces anoikis in neonatal rat ventricular myocytes (2002) Circ. Res., 90, pp. 1282-1289Wu, S.C., Solaro, R.J., Protein kinase C zeta. A novel regulator of both phosphorylation and de-phosphorylation of cardiac sarcomeric proteins (2007) J. Biol. Chem., 282, pp. 30691-30698Berra, E., Diaz-Meco, M.T., Lozano, J., Frutos, S., Municio, M.M., Sanchez, P., Sanz, L., Moscat, J., Evidence for a role of MEK and MAPK during signal transduction by protein kinase C zeta (1995) EMBO J., 14, pp. 6157-6163Leitges, M., Sanz, L., Martin, P., Duran, A., Braun, U., Garcia, J.F., Camacho, F., Moscat, J., Targeted disruption of the zetaPKC gene results in the impairment of the NF-kappaB pathway (2001) Mol. Cell, 8, pp. 771-780Franchini, K.G., Torsoni, A.S., Soares, P.H., Saad, M.J., Early activation of the multicomponent signaling complex associated with focal adhesion kinase induced by pressure overload in the rat heart (2000) Circ. Res., 87, pp. 558-565Nadruz Jr., W., Kobarg, C.B., Kobarg, J., Franchini, K.G., c-Jun is regulated by combination of enhanced expression and phosphorylation in acute-overloaded rat heart (2004) Am. J. Physiol. Heart Circ. Physiol., 286, pp. H760-H767Balendran, A., Biondi, R.M., Cheung, P.C., Casamayor, A., Deak, M., Alessi, D.R., A 3-phosphoinositide-dependent protein kinase-1 (PDK1) docking site is required for the phosphorylation of protein kinase Czeta (PKCzeta) and PKC-related kinase 2 by PDK1 (2000) J. Biol. Chem., 275, pp. 20806-20813Torsoni, A.S., Fonseca, P.M., Crosara-Alberto, D.P., Franchini, K.G., Early activation of p160ROCK by pressure overload in rat heart (2003) Am. J. Physiol. Cell Physiol., 284, pp. C1411-C1419Cooper, L.A., Shen, T.L., Guan, J.L., Regulation of focal adhesion kinase by its amino-terminal domain through an autoinhibitory interaction (2003) Mol. Cell. Biol., 23, pp. 8030-8041Schaller, M.D., Otey, C.A., Hildebrand, J.D., Parsons, J.T., Focal adhesion kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains (1995) J. Cell Biol., 130, pp. 1181-1187Dunty, J.M., Gabarra-Niecko, V., King, M.L., Ceccarelli, D.F., Eck, M.J., Schaller, M.D., FERM domain interaction promotes FAK signaling (2004) Mol. Cell. Biol., 24, pp. 5353-5368Boluyt, M.O., Bing, O.H., Matrix gene expression and decompensated heart failure: the aged SHR model (2000) Cardiovasc. Res., 46, pp. 239-249Chou, M.M., Hou, W., Johnson, J., Graham, L.K., Lee, M.H., Chen, C.S., Newton, A.C., Toker, A., Regulation of protein kinase C zeta by PI 3-kinase and PDK-1 (1998) Curr. Biol., 8, pp. 1069-1077Gu, X., Bishop, S.P., Increased protein kinase C and isozyme redistribution in pressure-overload cardiac hypertrophy in the rat (1994) Circ. Res., 75, pp. 926-931Braun, M.U., LaRosee, P., Schon, S., Borst, M.M., Strasser, R.H., Differential regulation of cardiac protein kinase C isozyme expression after aortic banding in rat (2002) Cardiovasc. Res., 56, pp. 52-63Sentex, E., Wang, X., Liu, X., Lukas, A., Dhalla, N.S., Expression of protein kinase C isoforms in cardiac hypertrophy and heart failure due to volume overload (2006) Can. J. Physiol. Pharmacol., 84, pp. 227-238Brancaccio, M., Hirsch, E., Notte, A., Selvetella, G., Lembo, G., Tarone, G., Integrin signalling: the tug-of-war in heart hypertrophy (2006) Cardiovasc. Res., 70, pp. 422-433Hirai, T., Chida, K., Protein kinase Czeta (PKCzeta): activation mechanisms and cellular functions (2003) J. Biochem. (Tokyo), 133, pp. 1-7Levine, B., Kalman, J., Mayer, L., Fillit, H.M., Packer, M., Elevated circulating levels of tumor necrosis factor in severe chronic heart failure (1990) N. Engl. J. Med., 323, pp. 236-241Meldrum, D.R., Tumor necrosis factor in the heart (1998) Am. J. Physiol., 274, pp. R577-R595Defer, N., Azroyan, A., Pecker, F., Pavoine, C., TNFR1 and TNFR2 signaling interplay in cardiac myocytes (2007) J. Biol. Chem., 282, pp. 35564-35573Sopontammarak, S., Aliharoob, A., Ocampo, C., Arcilla, R.A., Gupta, M.P., Gupta, M., Mitogen-activated protein kinases (p38 and c-Jun NH2-terminal kinase) are differentially regulated during cardiac volume and pressure overload hypertrophy (2005) Cell Biochem. Biophys., 43, pp. 61-76Ha, T., Li, Y., Gao, X., McMullen, J.R., Shioi, T., Izumo, S., Kelley, J.L., Li, C., Attenuation of cardiac hypertrophy by inhibiting both mTOR and NFkappaB activation in vivo (2005) Free Radic. Biol. Med., 39, pp. 1570-1580Cox, B.D., Natarajan, M., Stettner, M.R., Gladson, C.L., New concepts regarding focal adhesion kinase promotion of cell migration and proliferation (2006) J. Cell. Biochem., 99, pp. 35-52Schlaepfer, D.D., Mitra, S.K., Ilic, D., Control of motile and invasive cell phenotypes by focal adhesion kinase (2004) Biochim. Biophys. Acta, 1692, pp. 77-102Calalb, M.B., Polte, T.R., Hanks, S.K., Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases (1995) Mol. Cell. Biol., 15, pp. 954-963Quach, N.L., Rando, T.A., Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells (2006) Dev. Biol., 293, pp. 38-52Mitra, S.K., Hanson, D.A., Schlaepfer, D.D., Focal adhesion kinase: in command and control of cell motility (2005) Nat. Rev. Mol. Cell Biol., 6, pp. 56-68Hsia, D.A., Mitra, S.K., Hauck, C.R., Streblow, D.N., Nelson, J.A., Ilic, D., Huang, S., Schlaepfer, D.D., Differential regulation of cell motility and invasion by FAK (2003) J. Cell Biol., 160, pp. 753-767Moissoglu, K., Gelman, I.H., v-Src rescues actin-based cytoskeletal architecture and cell motility and induces enhanced anchorage independence during oncogenic transformation of focal adhesion kinase-null fibroblasts (2003) J. Biol. Chem., 278, pp. 47946-47959Yi, X.P., Zhou, J., Huber, L., Qu, J., Wang, X., Gerdes, A.M., Li, F., Nuclear compartmentalization of FAK and FRNK in cardiac myocytes (2006) Am. J. Physiol. Heart Circ. Physiol., 290, pp. H2509-H2515Xia, H., Nho, R.S., Kahm, J., Kleidon, J., Henke, C.A., Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a beta 1 integrin viability signaling pathway (2004) J. Biol. Chem., 279, pp. 33024-33034Wu, J.C., Tsai, R.Y., Chung, T.H., Role of catenins in the development of gap junctions in rat cardiomyocytes (2003) J. Cell. Biochem., 88, pp. 823-835Sheikh, F., Chen, Y., Liang, X., Hirschy, A., Stenbit, A.E., Gu, Y., Dalton, N.D., Chen, J., alpha-E-catenin inactivation disrupts the cardiomyocyte adherens junction, resulting in cardiomyopathy and susceptibility to wall rupture (2006) Circulation, 114, pp. 1046-105
    corecore