1,252 research outputs found

    Stellar Motion around Spiral Arms: Gaia Mock Data

    Get PDF
    We compare the stellar motion around a spiral arm created in two different scenarios, transient/co-rotating spiral arms and density-wave-like spiral arms. We generate Gaia mock data from snapshots of the simulations following these two scenarios using our stellar population code, SNAPDRAGONS, which takes into account dust extinction and the expected Gaia errors. We compare the observed rotation velocity around a spiral arm similar in position to the Perseus arm, and find that there is a clear difference in the velocity features around the spiral arm between the co-rotating spiral arm and the density-wave-like spiral arm. Our result demonstrates that the volume and accuracy of the Gaia data are sufficient to clearly distinguish these two scenarios of the spiral arms.Comment: 5 pages, 1 figure, to appear in the proceedings of "The Milky Way Unravelled by Gaia: GREAT Science from the Gaia Data Releases", Barcelona, 1-5 December 2014, eds. N. Walton, F. Figueras, C. Soubira

    Gas and Stellar Motions and Observational Signatures of Co-Rotating Spiral Arms

    Get PDF
    We have observed a snapshot of our N-body/Smoothed Particle Hydrodynamics simulation of a Milky Way-sized barred spiral galaxy in a similar way to how we can observe the Milky Way. The simulated galaxy shows a co-rotating spiral arm, i.e. the spiral arm rotates with the same speed as the circular speed. We observed the rotation and radial velocities of the gas and stars as a function of the distance from our assumed location of the observer at the three lines of sight on the disc plane, (l, b) = (90, 0), (120, 0) and (150,0) deg. We find that the stars tend to rotate slower (faster) behind (at the front of) the spiral arm and move outward (inward), because of the radial migration. However, because of their epicycle motion, we see a variation of rotation and radial velocities around the spiral arm. On the other hand, the cold gas component shows a clearer trend of rotating slower (faster) and moving outward (inward) behind (at the front of) the spiral arm, because of the radial migration. We have compared the results with the velocity of the maser sources from Reid et al. (2014), and find that the observational data show a similar trend in the rotation velocity around the expected position of the spiral arm at l = 120 deg. We also compared the distribution of the radial velocity from the local standard of the rest, V_LSR, with the APOGEE data at l = 90 deg as an example.Comment: 10 pages, 7 figures, accepted for publication in MNRA

    The stellar kinematics of co-rotating spiral arms in Gaia mock observations

    Get PDF
    We have observed an N-body/Smoothed Particle Hydrodynamics simulation of a Milky Way like barred spiral galaxy. We present a simple method that samples N-body model particles into mock Gaia stellar observations and takes into account stellar populations, dust extinction and Gaia's science performance estimates. We examine the kinematics around a nearby spiral arm at a similar position to the Perseus arm at three lines of sight in the disc plane; (l,b)=(90,0), (120,0) and (150,0) degrees. We find that the structure of the peculiar kinematics around the co-rotating spiral arm, which is found in Kawata et al. (2014b), is still visible in the observational data expected to be produced by Gaia despite the dust extinction and expected observational errors of Gaia. These observable kinematic signatures will enable testing whether the Perseus arm of the Milky Way is similar to the co-rotating spiral arms commonly seen in N-body simulations.Comment: 9 pages 4 Figures, submitted to MNRAS 22nd Dec 201

    EUVE J0425.6-5714: A Newly Discovered AM Herculis Star

    Get PDF
    We detected a new AM Her star serendipitously in a 25 day observation with the EUVE satellite. A coherent period of 85.82 min is present in the EUVE Deep Survey imager light curve of this source. A spectroscopic identification is made with a 19th magnitude blue star that has H and He emission lines, and broad cyclotron humps typical of a magnetic cataclysmic variable. A lower limit to the polar magnetic field of 46 MG is estimated from the spacing of the cyclotron harmonics. EUVE J0425.6-5714 is also detected in archival ROSAT HRI observations spanning two months, and its stable and highly structured light curve permits us to fit a coherent ephemeris linking the ROSAT and EUVE data over a 1.3 yr gap. The derived period is 85.82107 +/- 0.00020 min, and the ephemeris should be accurate to 0.1 cycles until the year 2005. A narrow but partial X-ray eclipse suggests that this object belongs to the group of Am Her stars whose viewing geometry is such that the accretion stream periodically occults the soft X-ray emitting accretion spot on the surface of the white dwarf. A non-detection of hard X-rays from ASCA observations that are contemporaneous with the ROSAT HRI shows that the soft X-rays must dominate by at least an order of magnitude, which is consistent with a known trend among AM Her stars with large magnetic field. This object should not be confused with the Seyfert galaxy 1H 0419-577 (= LB 1727), another X-ray/EUV source which lies only 4' away, and was the principal target of these monitoring observations.Comment: 13 pages, 5 figures, to appear in PASP, Dec. 1998 issu

    Radial Distribution of Stellar Motions in Gaia DR2

    Get PDF
    By taking advantage of the superb measurements of position and velocity for an unprecedented large number of stars provided in Gaia DR2, we have generated the first maps of the rotation velocity, VrotV_{\rm rot}, and vertical velocity, VzV_{\rm z}, distributions as a function of the Galactocentric radius, RgalR_{\rm gal}, across a radial range of 5<Rgal<125<R_{\rm gal}<12~kpc. In the RVrotR-V_{\rm rot} map, we have identified many diagonal ridge features, which are compared with the location of the spiral arms and the expected outer Lindblad resonance of the Galactic bar. We have detected also radial wave-like oscillations of the peak of the vertical velocity distribution.Comment: 5 pages, 3 figures, accepted for publication in MNRAS Lette

    Spiral and bar driven peculiar velocities in Milky Way sized galaxy simulations

    Get PDF
    We investigate the kinematic signatures induced by spiral and bar structure in a set of simulations of Milky Way-sized spiral disc galaxies. The set includes test particle simulations that follow a quasi-stationary density wave-like scenario with rigidly rotating spiral arms, and NN-body simulations that host a bar and transient, co-rotating spiral arms. From a location similar to that of the Sun, we calculate the radial, tangential and line-of-sight peculiar velocity fields of a patch of the disc and quantify the fluctuations by computing the power spectrum from a two-dimensional Fourier transform. We find that the peculiar velocity power spectrum of the simulation with a bar and transient, co-rotating spiral arms fits very well to that of APOGEE red clump star data, while the quasi-stationary density wave spiral model without a bar does not. We determine that the power spectrum is sensitive to the number of spiral arms, spiral arm pitch angle and position with respect to the spiral arm. However, it is necessary to go beyond the line of sight velocity field in order to distinguish fully between the various spiral models with this method. We compute the power spectrum for different regions of the spiral discs, and discuss the application of this analysis technique to external galaxies.Comment: 14 pages, 11 figures. Improved and MNRAS Accepte

    A panchromatic analysis of starburst galaxy M82: Probing the dust properties

    Get PDF
    (Abridged) We combine NUV, optical and IR imaging of the nearby starburst galaxy M82 to explore the properties of the dust both in the interstellar medium of the galaxy and the dust entrained in the superwind. The three NUV filters of Swift/UVOT enable us to probe in detail the properties of the extinction curve in the region around the 2175A bump. The NUV colour-colour diagram strongly rules out a Calzetti-type law, which can either reflect intrinsic changes in the dust properties or in the star formation history compared to starbursts well represented by such an attenuation law. We emphasize that it is mainly in the NUV region where a standard Milky-Way-type law is preferred over a Calzetti law. The age and dust distribution of the stellar populations is consistent with the scenario of an encounter with M81 in the recent 400 Myr. The radial gradients of the NUV and optical colours in the superwind region support the hypothesis that the emission in the wind cone is driven by scattering from dust grains entrained in the ejecta. The observed wavelength dependence reveals either a grain size distribution n(a)a2.5n(a)\propto a^{-2.5}, where aa is the size of the grain, or a flatter distribution with a maximum size cutoff, suggesting that only small grains are entrained in the supernovae-driven wind.Comment: 12 pages, 12 figures, 3 tables, MNRAS, in pres

    Solid phase micro extraction for organic contamination control throughout assembly and operational phases of space missions

    Get PDF
    Space missions concerned with life detection contain highly sensitive instruments for the detection of organics. Terrestrial contamination can interfere with signals of indigenous organics in samples and has the potential to cause false positive biosignature detections, which may lead to incorrect suggestions of the presence of life elsewhere in the Solar System. This study assessed the capability of solid phase micro extraction (SPME) as a method for monitoring organic contamination encountered by spacecraft hardware during assembly and operation. SPME-gas chromatography-mass spectrometry (SPME-GC-MS) analysis was performed on potential contaminant source materials, which are commonly used in spacecraft construction. The sensitivity of SPME-GC-MS to organics was assessed in the context of contaminants identified in molecular wipes taken from hardware surfaces on the ExoMars Rosalind Franklin rover. SPME was found to be effective at detecting a wide range of common organic contaminants that include aromatic hydrocarbons, non-aromatic hydrocarbons, nitrogen-containing compounds, alcohols and carbonyls. A notable example of correlation of contaminant with source material was the detection of benzenamine compounds in an epoxy adhesive analyzed by SPME-GC-MS and in the ExoMars rover surface wipe samples. The current form of SPME-GC-MS does not enable quantitative evaluation of contaminants, nor is it suitable for the detection of every group of organic molecules relevant to astrobiological contamination concerns, namely, large and/or polar molecules such as amino acids. However, it nonetheless represents an effective new monitoring method for rapid, easy identification of organic contaminants commonly present on spacecraft hardware and could thus be utilized in future space missions as part of their contamination control and mitigation protocols

    A long-term optical and X-ray ephemeris of the polar EK Ursae Majoris

    Full text link
    We searched for long-term period changes in the polar EK UMa using new optical data and archival X-ray/EUV data. An optical ephemeris was derived from data taken remotely with the MONET/N telescope and compared with the X-ray ephemeris based on Einstein, Rosat, and EUVE data. A three-parameter fit to the combined data sets yields the epoch, the period, and the phase offset between the optical minima and the X-ray absorption dips. An added quadratic term is insignificant and sets a limit to the period change. The derived linear ephemeris is valid over 30 years and the common optical and X-ray period is P=0.0795440225(24) days. There is no evidence of long-term O-C variations or a period change over the past 17 years Delta P = -0.14+-0.50 ms. We suggest that the observed period is the orbital period and that the system is tightly synchronized. The limit on Delta P and the phase constancy of the bright part of the light curve indicate that O-C variations of the type seen in the polars DP Leo and HU Aqr or the pre-CV NN Ser do not seem to occur in EK UMa. The X-ray dips lag the optical minima by 9.5+-0.7 deg in azimuth, providing some insight into the accretion geometry.Comment: 4 pages, 2 Postscript figures, accepted for publication in Astronomy & Astrophysic

    UBVRI photopolarimetry of the long period eclipsing AM Herculis binary V1309

    Get PDF
    We report simultaneous UBVRI photo-polarimetric observations of the long period (7.98 h) AM Her binary V1309 Ori. The length and shape of the eclipse ingress and egress varies from night to night. We suggest this is due to the variation in the brightness of the accretion stream. By comparing the phases of circular polarization zero-crossovers with previous observations, we confirm that V1309 Ori is well synchronized, and find an upper limit of 0.002 percent for the difference between the spin and orbital periods. We model the polarimetry data using a model consisting of two cyclotron emission regions at almost diametrically opposite locations, and centered at colatitude 35 (deg) and 145 (deg) on the surface of the white dwarf. We also present archive X-ray observations which show that the negatively polarised accretion region is X-ray bright.Comment: 11 pages, 12 figures (2 colour), Fig1 and Fig 4 are in lower resolution than in original paper, accepted for publication in Monthly Notices of the Royal Astronomical Societ
    corecore