17 research outputs found

    The influence of small field sizes, penumbra, spot size and measurement depth on perturbation factors for microionization chambers

    No full text
    The purpose of this study was the investigation of perturbation factors for microionization chambers in small field dosimetry and the influence of penumbra for different spot sizes. To this purpose, correlated sampling was implemented in the EGSnrc Monte Carlo (MC) user code cavity: CScavity. CScavity was first benchmarked against results in the literature for an NE2571 chamber. An efficiency increase of 17 was attained for the calculation of a realistic chamber perturbation factor in a water phantom. Calculations have been performed for microionization chambers of type PinPoint 31006 and PinPoint 31016 in full BEAMnrc linac simulations. Investigating the physical backgrounds of the differences for these small field settings, perturbation factors have been split up into (1) central electrode perturbation, (2) wall perturbation, (3) air-to-water perturbation (chamber volume air-to-water) and (4) water volume perturbation (water chamber volume to 1 mm(3) voxel). The influence of different spot sizes, position in penumbra, measuring depth and detector geometry on these perturbation factors has been investigated, in a 0.8 x 0.8 cm(2) field setting. p(cel) for the PP31006 steel electrode shows a variation of up to 1% in the lateral position, but only 0.4% for the PP31016 with an Al electrode. The air-to-water perturbation in the optimal scanning direction for both profiles and depth is most influenced by the radiation field, and only to a small extent the chamber geometry. The PP31016 geometry (shorter, larger radius) requires less total perturbation within the central axis of the field, but results in slightly larger variations off axis in the optimal scanning direction. Smaller spot sizes (0.6 mm FWHM) and sharper penumbras, compared to larger spot sizes ( 2 mm FWHM), result in larger perturbation starting in the penumbra. The longer geometries of the PP31006/14/15 exhibit in the non-optimal scanning direction large variations in total perturbation (p(tot) 1.201(4) (0.6 mm spot, 3 mm off axis, type A MC uncertainty) to 0.803(4) (5 mm off axis)) mainly due to volume perturbation. Therefore in IMRT settings, when the detector is not always in the optimal scanning direction, the PP31016 geometry requires less extreme perturbation (max p(tot) 1.130(3)) and shows less variation. However, these results suggest that small variations in positioning, spot size or MLC result in large differences in perturbation factors. Therefore even these 0.016 cm(3) ionization chambers are limited in their use for a field setting of 0.8 x 0.8 cm(2), as used in this investigation

    Nonelective surgery at night and in-hospital mortality : prospective observational data from the European Surgical Outcomes Study

    No full text
    BACKGROUND Evidence suggests that sleep deprivation associated with night-time working may adversely affect performance resulting in a reduction in the safety of surgery and anaesthesia. OBJECTIVE Our primary objective was to evaluate an association between nonelective night-time surgery and in-hospital mortality. We hypothesised that urgent surgery performed during the night was associated with higher in-hospital mortality and also an increase in the duration of hospital stay and the number of admissions to critical care. DESIGN A prospective cohort study. This is a secondary analysis of a large database related to perioperative care and outcome (European Surgical Outcome Study). SETTING Four hundred and ninety-eight hospitals in 28 European countries. PATIENTS Men and women older than 16 years who underwent nonelective, noncardiac surgery were included according to time of the procedure. INTERVENTION None. MAIN OUTCOME MEASURES Primary outcome was in-hospital mortality; the secondary outcome was the duration of hospital stay and critical care admission. RESULTS Eleven thousand two hundred and ninety patients undergoing urgent surgery were included in the analysis with 636 in-hospital deaths (5.6%). Crude mortality odds ratios (ORs) increased sequentially from daytime [426 deaths (5.3%)] to evening [150 deaths (6.0%), OR 1.14; 95% confidence interval 0.94 to 1.38] to night-time [60 deaths (8.3%), OR 1.62; 95% confidence interval 1.22 to 2.14]. Following adjustment for confounding factors, surgery during the evening (OR 1.09; 95% confidence interval 0.91 to 1.31) and night (OR 1.20; 95% confidence interval 0.9 to 1.6) was not associated with an increased risk of postoperative death. Admittance rate to an ICU increased sequentially from daytime [891 (11.1%)], to evening [347 (13.8%)] to night time [149 (20.6%)]. CONCLUSION In patients undergoing nonelective urgent noncardiac surgery, in-hospital mortality was associated with well known risk factors related to patients and surgery, but we did not identify any relationship with the time of day at which the procedure was performed. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT0120360
    corecore