4,152 research outputs found
Arrays of Josephson junctions between unconventional superconductors
We study large arrays of mesoscopic junctions between gapless superconductors
where the tunneling processes of both, particle-hole and Cooper, pairs give
rise to a strongly retarded effective action which, contrary to the standard
case, can not be readily characterized in terms of a local Josephson energy.
This complexity is expected to arise in, e.g., the grain boundary and c-axis
junctions in layered high-T_c superconductors. A new representation for
describing collective phenomena in this system is introduced, and its phase
diagram is discussed, alongside the electrical conductivity.Comment: Latex, 4+ pages, 1 figur
Mapping for the Masses: Accessing Web 2.0 through Crowdsourcing
The authors describe how we are harnessing the power of web 2.0 technologies to create new approaches to collecting, mapping, and sharing geocoded data. The authors begin with GMapCreator that lets users fashion new maps using Google Maps as a base. The authors then describe MapTube that enables users to archive maps and demonstrate how it can be used in a variety of contexts to share map information, to put existing maps into a form that can be shared, and to create new maps from the bottom-up using a combination of crowdcasting, crowdsourcing, and traditional broadcasting. The authors conclude by arguing that such tools are helping to define a neogeography that is essentially "mapping for the masses,'' while noting that there are many issues of quality, accuracy, copyright, and trust that will influence the impact of these tools on map-based communication
Plant communities of the upper Murrumbidgee catchment in New South Wales and the Australian Capital Territory
Native vegetation of the upper Murrumbidgee catchment in southeast NSW and the Australian Capital-Territory (ACT) was classified into 75 plant communities across 18 NSW Vegetation Classes within nine Structural-Formations. Plant communities were derived through numerical analysis of 4,106 field survey plots including 3,787-plots from 58 existing survey datasets and 319 new plots, which were sampled in under surveyed ecosystems. All plant-communities are described at a level appropriate for discrimination of threatened ecological communities and distinct-vegetation mapping units.
The classification describes plant communities in the context of the upper Murrumbidgee catchment and surrounding-landscapes of similar ecological character. It incorporates and, in some instances, refines identification of plant-communities described in previous classifications of alpine vegetation, forest ecosystems, woodlands and grasslands-across the Australian Alps and South Eastern Highlands within the upper Murrumbidgee catchment. Altitude,-precipitation, soil saturation, lithology, slope, aspect and landscape position were all important factors in guiding-plant community associations.
Nine Threatened Ecological Communities under Commonwealth, NSW and ACT legislation occur in the upper-Murrumbidgee catchment. This study has also identified five additional plant communities which are highly restricted-in distribution and may require active management or protection to ensure their survival
Reduction of Thermal Residual Strains in Adhesively Bonded Composite Repairs
Many military and commercial aircraft are being called upon to fly well beyond their original intended service lives. This has forced the United States Air Force (USAF) to increasingly rely on structural repairs to address fatigue induced damage and to extend aircraft useful life. The focus of this research is the use of a high-strength composite patch technique to repair a fatigue crack on an aluminum aircraft structure. This study investigates the thermal residual strains that occur as a direct result of the coefficient of thermal expansion (CTE) mismatch between the repair patch and the underlying cracked metallic structure to which the patch is bonded. This research examines the response of a precracked 24 inches x 6 inches x 0.125 inch 7075-T6 aluminum panel repaired with a 15-ply graphite/epoxy patch. Two adhesives: EA 9696 and FM 73M were used with varying cure cycles. The hypothesis is that by reducing cure temperatures the CTE mismatch will be less dramatic thus yielding a more robust repair with a comparable fatigue crack growth rate. The research concluded that reducing the cure cycle temperature could decrease the thermal residual strains by as much as 26.5% between the graphite/epoxy composite patch and structure when FM 73M adhesive is used to bond them together and 7.4% when EA 9696 is used. The research also concluded that a lower cure cycle temperature did not detrimentally affect the panels\u27 fatigue crack growth rates
On the Quantum Jarzynski Identity
In this note, we will discuss how to compactly express and prove the
Jarzynski identity for an open quantum system with dissipative dynamics. We
will avoid explicitly measuring the work directly, which is tantamount to
continuously monitoring the system, and instead measure the heat flow from the
environment. We represent the measurement of heat flow with Hermitian map
superoperators that act on the system density matrix. Hermitian maps provide a
convenient and compact representation of sequential measurement and correlation
functions.Comment: 4 page
Near-optimal protocols in complex nonequilibrium transformations
The development of sophisticated experimental means to control nanoscale
systems has motivated efforts to design driving protocols which minimize the
energy dissipated to the environment. Computational models are a crucial tool
in this practical challenge. We describe a general method for sampling an
ensemble of finite-time, nonequilibrium protocols biased towards a low average
dissipation. We show that this scheme can be carried out very efficiently in
several limiting cases. As an application, we sample the ensemble of
low-dissipation protocols that invert the magnetization of a 2D Ising model and
explore how the diversity of the protocols varies in response to constraints on
the average dissipation. In this example, we find that there is a large set of
protocols with average dissipation close to the optimal value, which we argue
is a general phenomenon.Comment: 6 pages and 3 figures plus 4 pages and 5 figures of supplemental
materia
Measuring thermodynamic length
Thermodynamic length is a metric distance between equilibrium thermodynamic
states. Among other interesting properties, this metric asymptotically bounds
the dissipation induced by a finite time transformation of a thermodynamic
system. It is also connected to the Jensen-Shannon divergence, Fisher
information and Rao's entropy differential metric. Therefore, thermodynamic
length is of central interest in understanding matter out-of-equilibrium. In
this paper, we will consider how to define thermodynamic length for a small
system described by equilibrium statistical mechanics and how to measure
thermodynamic length within a computer simulation. Surprisingly, Bennett's
classic acceptance ratio method for measuring free energy differences also
measures thermodynamic length.Comment: 4 pages; Typos correcte
Non-equilibrium Relations for Spin Glasses with Gauge Symmetry
We study the applications of non-equilibrium relations such as the Jarzynski
equality and fluctuation theorem to spin glasses with gauge symmetry. It is
shown that the exponentiated free-energy difference appearing in the Jarzynski
equality reduces to a simple analytic function written explicitly in terms of
the initial and final temperatures if the temperature satisfies a certain
condition related to gauge symmetry. This result is used to derive a lower
bound on the work done during the non-equilibrium process of temperature
change. We also prove identities relating equilibrium and non-equilibrium
quantities. These identities suggest a method to evaluate equilibrium
quantities from non-equilibrium computations, which may be useful to avoid the
problem of slow relaxation in spin glasses.Comment: 8 pages, 2 figures, submitted to JPS
Near-equilibrium measurements of nonequilibrium free energy
A central endeavor of thermodynamics is the measurement of free energy
changes. Regrettably, although we can measure the free energy of a system in
thermodynamic equilibrium, typically all we can say about the free energy of a
non-equilibrium ensemble is that it is larger than that of the same system at
equilibrium. Herein, we derive a formally exact expression for the probability
distribution of a driven system, which involves path ensemble averages of the
work over trajectories of the time-reversed system. From this we find a simple
near-equilibrium approximation for the free energy in terms of an excess mean
time-reversed work, which can be experimentally measured on real systems. With
analysis and computer simulation, we demonstrate the accuracy of our
approximations for several simple models.Comment: 5 pages, 3 figure
- …