30 research outputs found

    Evaluation of Lesions and Viral Antigen Distribution in Domestic Pigs Inoculated Intranasally with African Swine Fever Virus Ken05/Tk1 (Genotype X)

    Get PDF
    The understanding of the pathogenic mechanisms and the clinicopathological forms caused by currently circulating African swine fever virus (ASFV) isolates is incomplete. So far, most of the studies have been focused on isolates classified within genotypes I and II, the only genotypes that have circulated outside of Africa. However, less is known about the clinical presentations and lesions induced by isolates belonging to the other twenty-two genotypes. Therefore, the early clinicopathological identification of disease outbreaks caused by isolates belonging to, as yet, not well-characterised ASFV genotypes may be compromised, which might cause a delay in the implementation of control measures to halt the virus spread. To improve the pathological characterisation of disease caused by diverse isolates, we have refined the macroscopic and histopathological evaluation protocols to standardise the scoring of lesions. Domestic pigs were inoculated intranasally with different doses (high, medium and low) of ASFV isolate Ken05/Tk1 (genotype X). To complement previous studies, the distribution and severity of macroscopic and histopathological lesions, along with the amount and distribution of viral antigen in tissues, were characterised by applying the new scoring protocols. The intranasal inoculation of domestic pigs with high doses of the Ken05/Tk1 isolate induced acute forms of ASF in most of the animals. Inoculation with medium doses mainly induced acute forms of disease. A less severe but longer clinical course, typical of subacute forms, characterised by the presence of more widespread and severe haemorrhages and oedema, was observed in one pig inoculated with the medium dose. The severity of vascular lesions (haemorrhages and oedema) induced by high and medium doses was not associated with the amount of virus antigen detected in tissues, therefore these might be attributed to indirect mechanisms not evaluated in the present study. The absence of clinical signs, lesions and detectable levels of virus genome or antigen in blood from the animals inoculated with the lowest dose ruled out the existence of possible asymptomatic carriers or persistently infected pigs, at least for the 21 days period of the study. The results corroborate the moderate virulence of the Ken05/Tk1 isolate, as well as its capacity to induce both the acute and, occasionally, subacute forms of ASF when high and medium doses were administered intranasally.Innovate UK; Roslin Institute; APHA (CSKN0019); Department for Environment, Food and Rural Affairs (DEFRA), the Scottish Government; the Welsh Government; Swedish Environmental Protection Agency

    Proteome-Wide Screening Reveals Immunodominance in the CD8 T Cell Response against Classical Swine Fever Virus with Antigen-Specificity Dependent on MHC Class I Haplotype Expression

    Get PDF
    Vaccination with live attenuated classical swine fever virus (CSFV) vaccines induces a rapid onset of protection which has been associated with virus-specific CD8 T cell IFN-γ responses. In this study, we assessed the specificity of this response, by screening a peptide library spanning the CSFV C-strain vaccine polyprotein to identify and characterise CD8 T cell epitopes. Synthetic peptides were pooled to represent each of the 12 CSFV proteins and used to stimulate PBMC from four pigs rendered immune to CSFV by C-strain vaccination and subsequently challenged with the virulent Brescia strain. Significant IFN-γ expression by CD8 T cells, assessed by flow cytometry, was induced by peptide pools representing the core, E2, NS2, NS3 and NS5A proteins. Dissection of these antigenic peptide pools indicated that, in each instance, a single discrete antigenic peptide or pair of overlapping peptides was responsible for the IFN-γ induction. Screening and titration of antigenic peptides or truncated derivatives identified the following antigenic regions: core241–255 PESRKKLEKALLAWA and NS31902–1912 VEYSFIFLDEY, or minimal length antigenic peptides: E2996–1003 YEPRDSYF, NS21223–1230 STVTGIFL and NS5A3070–3078 RVDNALLKF. The epitopes are highly conserved across CSFV strains and variable sequence divergence was observed with related pestiviruses. Characterisation of epitope-specific CD8 T cells revealed evidence of cytotoxicity, as determined by CD107a mobilisation, and a significant proportion expressed TNF-α in addition to IFN-γ. Finally, the variability in the antigen-specificity of these immunodominant CD8 T cell responses was confirmed to be associated with expression of distinct MHC class I haplotypes. Moreover, recognition of NS21223–1230 STVTGIFL and NS31902–1912 VEYSFIFLDEY by a larger group of C-strain vaccinated animals showed that these peptides could be restricted by additional haplotypes. Thus the antigenic regions and epitopes identified represent attractive targets for evaluation of their vaccine potential against CSFV

    Proteome-Wide Screening Reveals Immunodominance in the CD8 T Cell Response against Classical Swine Fever Virus with Antigen-Specificity Dependent on MHC Class I Haplotype Expression

    No full text
    Vaccination with live attenuated classical swine fever virus (CSFV) vaccines induces a rapid onset of protection which has been associated with virus-specific CD8 T cell IFN-γ responses. In this study, we assessed the specificity of this response, by screening a peptide library spanning the CSFV C-strain vaccine polyprotein to identify and characterise CD8 T cell epitopes. Synthetic peptides were pooled to represent each of the 12 CSFV proteins and used to stimulate PBMC from four pigs rendered immune to CSFV by C-strain vaccination and subsequently challenged with the virulent Brescia strain. Significant IFN-γ expression by CD8 T cells, assessed by flow cytometry, was induced by peptide pools representing the core, E2, NS2, NS3 and NS5A proteins. Dissection of these antigenic peptide pools indicated that, in each instance, a single discrete antigenic peptide or pair of overlapping peptides was responsible for the IFN-γ induction. Screening and titration of antigenic peptides or truncated derivatives identified the following antigenic regions: core241–255 PESRKKLEKALLAWA and NS31902–1912 VEYSFIFLDEY, or minimal length antigenic peptides: E2996–1003 YEPRDSYF, NS21223–1230 STVTGIFL and NS5A3070–3078 RVDNALLKF. The epitopes are highly conserved across CSFV strains and variable sequence divergence was observed with related pestiviruses. Characterisation of epitope-specific CD8 T cells revealed evidence of cytotoxicity, as determined by CD107a mobilisation, and a significant proportion expressed TNF-α in addition to IFN-γ. Finally, the variability in the antigen-specificity of these immunodominant CD8 T cell responses was confirmed to be associated with expression of distinct MHC class I haplotypes. Moreover, recognition of NS21223–1230 STVTGIFL and NS31902–1912 VEYSFIFLDEY by a larger group of C-strain vaccinated animals showed that these peptides could be restricted by additional haplotypes. Thus the antigenic regions and epitopes identified represent attractive targets for evaluation of their vaccine potential against CSFV

    Characterisation of virus-specific peripheral blood cell cytokine responses following vaccination or infection with classical swine fever viruses.

    No full text
    Existing live attenuated classical swine fever virus (CSFV) vaccines provide a rapid onset of complete protection but pose problems in discriminating infected amongst vaccinated animals. With a view to providing additional information on the cellular mechanisms that may contribute to protection, which in turn may aid the development of the next generation of CSFV vaccines, we explored the kinetics of the cytokine responses from peripheral blood cells of pigs vaccinated with an attenuated C-strain vaccine strain and/or infected with a recent CSFV isolate. Peripheral blood cells were isolated over the course of vaccination/infection and stimulated in vitro with C-strain or UK2000/7.1 viruses. Virus-specific responses of peripheral blood cells isolated from C-strain vaccinated pigs were dominated by the production of IFN-γ. IFN-γ production in response to the C-strain virus was first detected in vaccinates 9 days post-vaccination and was sustained over the period of observation. In contrast, cells from challenge control animals did not secrete IFN-γ in response to stimulation with C-strain or UK2000/7.1 viruses. Supernatants from UK2000/7.1 infected animals contained significant levels of pro-inflammatory cytokines from day 8 post-infection and these cytokines were present in both virus and mock stimulated cultures. The results suggest that the C-strain virus is a potent inducer of a type-1 T cell response, which may play a role in the protection afforded by such vaccines, whereas the pro-inflammatory cytokine responses observed in cultures from infected pigs may reflect a pathological pro-inflammatory cascade initiated in vivo following the replication and spread of CSFV
    corecore