2,878 research outputs found

    Airplane Stress Analysis

    Get PDF
    Report presents stress analysis of individual components of an airplane. Normal and abnormal loads, sudden loads, simple stresses, indirect simple stresses, resultant unit stress, repetitive and equivalent stress, maximum steady load and stress are considered

    Dynamically-Coupled Oscillators -- Cooperative Behavior via Dynamical Interaction --

    Full text link
    We propose a theoretical framework to study the cooperative behavior of dynamically coupled oscillators (DCOs) that possess dynamical interactions. Then, to understand synchronization phenomena in networks of interneurons which possess inhibitory interactions, we propose a DCO model with dynamics of interactions that tend to cause 180-degree phase lags. Employing an approach developed here, we demonstrate that although our model displays synchronization at high frequencies, it does not exhibit synchronization at low frequencies because this dynamical interaction does not cause a phase lag sufficiently large to cancel the effect of the inhibition. We interpret the disappearance of synchronization in our model with decreasing frequency as describing the breakdown of synchronization in the interneuron network of the CA1 area below the critical frequency of 20 Hz.Comment: 10 pages, 3 figure

    Electron-beam propagation in a two-dimensional electron gas

    Full text link
    A quantum mechanical model based on a Green's function approach has been used to calculate the transmission probability of electrons traversing a two-dimensional electron gas injected and detected via mode-selective quantum point contacts. Two-dimensional scattering potentials, back-scattering, and temperature effects were included in order to compare the calculated results with experimentally observed interference patterns. The results yield detailed information about the distribution, size, and the energetic height of the scattering potentials.Comment: 7 pages, 6 figure

    Mild Normobaric Hypoxia Exposure for Human-Autonomy System Testing

    Get PDF
    An experiment investigated the impact of normobaric hypoxia induction on aircraft pilot performance to specifically evaluate the use of hypoxia as a method to induce mild cognitive impairment to explore human-autonomous systems integration opportunities. Results of this exploratory study show that the effect of 15,000 feet simulated altitude did not induce cognitive deficits as indicated by performance on written, computer-based, or simulated flight tasks. However, the subjective data demonstrated increased effort by the human test subject pilots to maintain equivalent performance in a flight simulation task. This study represents current research intended to add to the current knowledge of performance decrement and pilot workload assessment to improve automation support and increase aviation safety

    External and internal noise surveys of London primary schools

    Get PDF
    Internal and external noise surveys have been carried out around schools in London, UK, to provide information on typical levels and sources to which children are exposed while at school. Noise levels were measured outside 142 schools, in areas away from flightpaths into major airports. 86% of the schools surveyed were exposed to noise from road traffic, the average external noise level outside a school being 57 dB LAeq. Detailed internal noise surveys have been carried out in 140 classrooms in 16 schools, together with classroom observations. It was found that noise levels inside classrooms depend upon the activities in which the children are engaged, with a difference of 20 dB LAeq between the 'quietest' and 'noisiest' activities. The average background noise level in classrooms exceeds the level recommended in current standards. The number of children in the classroom was found to affect noise levels. External noise influenced internal noise levels only when children were engaged in the quietest classroom activities. The effects of the age of the school buildings and types of window upon internal noise were examined but results were inconclusive

    Preferences for Medical Consultations from Online Providers: Evidence from a Discrete Choice Experiment in the United Kingdom

    Get PDF
    Background: In the UK, consultations for prescription medicines are available via private providers such as online pharmacies. However, these providers may have lower thresholds for prescribing certain drugs. This is a particular concern for antibiotics, given the increasing burden of antimicrobial resistance. Public preferences for consultations with online providers are unknown, hence the impact of increased availability of online consultations on antibiotic use and population health is unclear. Objective: To conduct a discrete choice experiment survey to understand UK public preferences for seeking online consultations, and the factors that influence these preferences, in the context of having symptoms for which antibiotics may be appropriate. Methods: In a survey conducted between July and August 2018, general population respondents completed 16 questions in which they chose a primary care consultation via either their local medical centre or an online provider. Consultations were described in terms of five attributes, including cost and similarity to traditional ‘face-to-face’ appointments. Choices were modelled using regression analysis. Results: Respondents (n = 734) placed a high value on having a consultation via their local medical centre rather than an online provider, and a low value on consultations by phone or video. However, respondents characterised as ‘busy young professionals’ showed a lower strength of preference for traditional consultations, with a higher concern for convenience. Conclusion: Before COVID-19, the UK public had limited appetite for consultations with online providers, or for consultations that were not face-to-face. Nevertheless, prescriptions from online providers should be monitored going forward, particularly for antibiotics, and in key patient groups

    Unexpected features of branched flow through high-mobility two-dimensional electron gases

    Full text link
    GaAs-based two-dimensional electron gases (2DEGs) show a wealth of remarkable electronic states, and serve as the basis for fast transistors, research on electrons in nanostructures, and prototypes of quantum-computing schemes. All these uses depend on the extremely low levels of disorder in GaAs 2DEGs, with low-temperature mean free paths ranging from microns to hundreds of microns. Here we study how disorder affects the spatial structure of electron transport by imaging electron flow in three different GaAs/AlGaAs 2DEGs, whose mobilities range over an order of magnitude. As expected, electrons flow along narrow branches that we find remain straight over a distance roughly proportional to the mean free path. We also observe two unanticipated phenomena in high-mobility samples. In our highest-mobility sample we observe an almost complete absence of sharp impurity or defect scattering, indicated by the complete suppression of quantum coherent interference fringes. Also, branched flow through the chaotic potential of a high-mobility sample remains stable to significant changes to the initial conditions of injected electrons.Comment: 22 pages, 4 figures, 1 tabl

    From multiple perspectives to shared understanding

    Get PDF
    The aim of this study was to explore how learners operating in a small group reach shared understanding as they work out joint research questions and build a theoretical framework and to identify the resources and tools they used in the process. The learners’ own interpretations of their group activities and learning were also taken into account. The data, consisting of group discussions and the documents produced by the group, were subjected to a qualitative content analysis. The group members employed a variety of resources and tools to exchange their individual perspectives and achieve shared understanding. Summaries of relevant literature laid a foundation for the group’s theoretical discussions. Reflective comparisons between their book knowledge and their personal experiences of online interaction and collaboration were frequent, suggesting that such juxtapositions may have enhanced their learning by intertwining the content to be mastered and the activities entailed by this particular content

    Bimodal Presentation Speeds up Auditory Processing and Slows Down Visual Processing

    Get PDF
    Many situations require the simultaneous processing of auditory and visual information, however, stimuli presented to one sensory modality can sometimes interfere with processing in a second sensory modality (i.e., modality dominance). The current study further investigated modality dominance by examining how task demands and bimodal presentation affect speeded auditory and visual discriminations. Participants in the current study had to quickly determine if two words, two pictures, or two word-picture pairings were the same or different, and we manipulated task demands across three different conditions. In an immediate recognition task, there was only one second between the two stimuli/stimulus pairs and auditory dominance was found. Compared to the respective unimodal baselines, pairing pictures and words together slowed down visual responses and sped up auditory responses. Increasing the interstimulus interval to four seconds and blocking verbal rehearsal weakened auditory dominance effects, however, conflicting and redundant visual cues sped up auditory discriminations. Thus, simultaneously presenting pictures and words had different effects on auditory and visual processing, with bimodal presentation slowing down visual processing and speeding up auditory processing. These findings are consistent with a proposed mechanism underlying auditory dominance, which posits that auditory stimuli automatically grab attention and attenuate/delay visual processing

    The arcade project

    Get PDF
    The Atmospheric Research for Climate and Astroparticle Detection (ARCADE) project aims to a better comprehension of the limits of applicability, systematics and possible enhancements of the typical techniques used for the measurement of the aerosol attenuation profiles of UV light in cosmic rays and gamma rays experiments. Aerosols are indeed the most variable component in the atmosphere on a short time scale, and experiments based on the detection of the UV light in atmosphere need a continuous monitoring of the aerosol stratification to obtain a reliable evaluation of the properties of the primary particles. The ARCADE project is measuring the aerosol attenuation of UV light due to aerosols with multiple techniques and instruments simultaneously on the same air mass. For this purpose, a Raman + elastic Lidar with a laser source at 355 nm has been built and is currently taking data in Lamar, Colorado together with the Atmospheric Monitoring Telescope (AMT) to detect UV light at a distance of 40 km from the Lidar laser source. The system has been installed on site in 2014 and data were taken every month during moonless nights for one year. A full simulation of the AMT system has been developed. The setup and simulation of the system, together with the AMT calibration system and first collected data are shown
    corecore