8 research outputs found

    Role of radiography, MRI and FDG-PET/CT in diagnosing, staging and therapeutical evaluation of patients with multiple myeloma

    Get PDF
    Multiple myeloma is a malignant B-cell neoplasm that involves the skeleton in approximately 80% of the patients. With an average age of 60 years and a 5-years survival of nearly 45% Brenner et al. (Blood 111:2516–2520, 35) the onset is to be classified as occurring still early in life while the disease can be very aggressive and debilitating. In the last decades, several new imaging techniques were introduced. The aim of this review is to compare the different techniques such as radiographic survey, multidetector computed tomography (MDCT), whole-body magnetic resonance imaging (WB-MRI), fluorodeoxyglucose positron emission tomography- (FDG-PET) with or without computed tomography (CT), and 99mTc-methoxyisobutylisonitrile (99mTc-MIBI) scintigraphy. We conclude that both FDG-PET in combination with low-dose CT and whole-body MRI are more sensitive than skeleton X-ray in screening and diagnosing multiple myeloma. WB-MRI allows assessment of bone marrow involvement but cannot detect bone destruction, which might result in overstaging. Moreover, WB-MRI is less suitable in assessing response to therapy than FDG-PET. The combination of PET with low-dose CT can replace the golden standard, conventional skeletal survey. In the clinical practise, this will result in upstaging, due to the higher sensitivity

    Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients

    No full text
    We have investigated the capacity of immature and mature monocyte-derived DCs pulsed with melanoma-associated peptides (gp100 and tyrosinase) to induce a primary cytotoxic T-lymphocyte response in vivo. Advanced HLA-A2.1(+) melanoma patients were vaccinated with peptide- and keyhole limpet hemocyanin (KLH)-pulsed DCs, either immature (9 patients) or matured by monocyte-conditioned medium/tumor necrosis factor alpha/prostaglandin E(2) (10 patients). All patients vaccinated with mature DCs showed a pronounced proliferative T-cell and humoral response against KLH. By contrast, KLH responses were absent in most of the patients vaccinated with immature DCs. Delayed-type hypersensitivity (DTH) reactions against antigen-pulsed DCs were only observed in patients vaccinated with mature DCs and not in patients vaccinated with immature DCs. MHC-peptide tetramer staining of DTH-derived T cells revealed the presence of specific T cells recognizing the melanoma-associated peptides in 1 patient. In a second patient, DTH-derived T cells showed specific lysis of tumor cells expressing the antigens used for DC pulsing. Only patients vaccinated with mature DCs showed objective clinical responses. Interestingly, both patients with long-term progression-free survival (22 and >40 months) were both vaccinated with mature DCs and demonstrated antigen-specific T-cell reactivity of DTH-derived T cells. We conclude that mature DC are superior to immature DC in the induction of immunological responses in melanoma patients, which may translate into improved clinical result

    Immunological responses to adjuvant vaccination with combined CD1c+ myeloid and plasmacytoid dendritic cells in stage III melanoma patients

    No full text
    We evaluated the immunological responses of lymph-node involved (stage III) melanoma patients to adjuvant dendritic cell vaccination with subsets of naturally occurring dendritic cells (nDCs). Fifteen patients with completely resected stage III melanoma were randomized to receive adjuvant dendritic cell vaccination with CD1c+ myeloid dendritic cells (cDC2s), plasmacytoid dendritic cells (pDCs) or the combination. Immunological response was the primary endpoint and secondary endpoints included safety and survival. In 80% of the patients, antigen-specific CD8+ T cells were detected in skin test-derived T cells and in 55% of patients, antigen-specific CD8+ T cells were detectable in peripheral blood. Functional interferon-γ-producing T cells were found in the skin test of 64% of the patients. Production of nDC vaccines meeting release criteria was feasible for all patients. Vaccination only induced grade 1–2 adverse events, mainly consisting of fatigue. In conclusion, adjuvant dendritic cell vaccination with cDC2s and/or pDCs is feasible, safe and induced immunological responses in the majority of stage III melanoma patients

    Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity

    No full text
    Dendritic cell (DC)-based immunotherapy is explored worldwide in cancer patients, predominantly with DC matured with pro-inflammatory cytokines and prostaglandin E2. We studied the safety and efficacy of vaccination with monocyte-derived DC matured with a cocktail of prophylactic vaccines that contain clinical-grade Toll-like receptor ligands (BCG, Typhim, Act-HIB) and prostaglandin E2 (VAC-DC). Stage III and IV melanoma patients were vaccinated via intranodal injection (12 patients) or combined intradermal/intravenous injection (16 patients) with VAC-DC loaded with keyhole limpet hemocyanin (KLH) and mRNA encoding tumor antigens gp100 and tyrosinase. Tumor antigen-specific T cell responses were monitored in blood and skin-test infiltrating-lymphocyte cultures. Almost all patients mounted prophylactic vaccine- or KLH-specific immune responses. Both after intranodal injection and after intradermal/intravenous injection, tumor antigen-specific immune responses were detected, which coincide with longer overall survival in stage IV melanoma patients. VAC-DC induce local and systemic CTC grade 2 and 3 toxicity, which is most likely caused by BCG in the maturation cocktail. The side effects were self-limiting or resolved upon a short period of systemic steroid therapy. We conclude that VAC-DC can induce functional tumor-specific responses. Unfortunately, toxicity observed after vaccination precludes the general application of VAC-DC, since in DC maturated with prophylactic vaccines BCG appears to be essential in the maturation cocktai

    Effective Clinical Responses in Metastatic Melanoma Patients after Vaccination with Primary Myeloid Dendritic Cells

    No full text
    Thus far, dendritic cell (DC)-based immunotherapy of cancer was primarily based on in vitro-generated monocyte-derived DCs, which require extensive in vitro manipulation. Here, we report on a clinical study exploiting primary CD1c(+) myeloid DCs, naturally circulating in the blood. Fourteen stage IV melanoma patients, without previous systemic treatment for metastatic disease, received autologous CD1c(+) myeloid DCs, activated by only brief (16 hours) ex vivo culture and loaded with tumor-associated antigens of tyrosinase and gp100. Our results show that therapeutic vaccination against melanoma with small amounts (3-10 × 10(6)) of myeloid DCs is feasible and without substantial toxicity. Four of 14 patients showed long-term progression-free survival (12-35 months), which directly correlated with the development of multifunctional CD8(+) T-cell responses in three of these patients. In particular, high CD107a expression, indicative for cytolytic activity, and IFNγ as well as TNFα and CCL4 production was observed. Apparently, these T-cell responses are essential to induce tumor regression and promote long-term survival by stalling tumor growth. We show that vaccination of metastatic melanoma patients with primary myeloid DCs is feasible and safe and results in induction of effective antitumor immune responses that coincide with improved progression-free survival. Clin Cancer Res; 22(9); 2155-66. ©2015 AAC

    Effective clinical responses in metastatic melanoma patients after vaccination with primary myeloid dendritic cells

    No full text
    \u3cp\u3ePURPOSE: Thus far, dendritic cell (DC)-based immunotherapy of cancer was primarily based on in vitro-generated monocyte-derived DCs, which require extensive in vitro manipulation. Here, we report on a clinical study exploiting primary CD1c(+) myeloid DCs, naturally circulating in the blood.\u3c/p\u3e\u3cp\u3eEXPERIMENTAL DESIGN: Fourteen stage IV melanoma patients, without previous systemic treatment for metastatic disease, received autologous CD1c(+) myeloid DCs, activated by only brief (16 hours) ex vivo culture and loaded with tumor-associated antigens of tyrosinase and gp100.\u3c/p\u3e\u3cp\u3eRESULTS: Our results show that therapeutic vaccination against melanoma with small amounts (3-10 × 10(6)) of myeloid DCs is feasible and without substantial toxicity. Four of 14 patients showed long-term progression-free survival (12-35 months), which directly correlated with the development of multifunctional CD8(+) T-cell responses in three of these patients. In particular, high CD107a expression, indicative for cytolytic activity, and IFNγ as well as TNFα and CCL4 production was observed. Apparently, these T-cell responses are essential to induce tumor regression and promote long-term survival by stalling tumor growth.\u3c/p\u3e\u3cp\u3eCONCLUSIONS: We show that vaccination of metastatic melanoma patients with primary myeloid DCs is feasible and safe and results in induction of effective antitumor immune responses that coincide with improved progression-free survival. Clin Cancer Res; 22(9); 2155-66. ©2015 AACR.\u3c/p\u3

    Adjuvant dendritic cell therapy in stage IIIB/C melanoma: the MIND-DC randomized phase III trial

    Get PDF
    Abstract Autologous natural dendritic cells (nDCs) treatment can induce tumor-specific immune responses and clinical responses in cancer patients. In this phase III clinical trial (NCT02993315), 148 patients with resected stage IIIB/C melanoma were randomized to adjuvant treatment with nDCs (n = 99) or placebo (n = 49). Active treatment consisted of intranodally injected autologous CD1c+ conventional and plasmacytoid DCs loaded with tumor antigens. The primary endpoint was the 2-year recurrence-free survival (RFS) rate, whereas the secondary endpoints included median RFS, 2-year and median overall survival, adverse event profile, and immunological response The 2-year RFS rate was 36.8% in the nDC treatment group and 46.9% in the control group (p = 0.31). Median RFS was 12.7 months vs 19.9 months, respectively (hazard ratio 1.25; 90% CI: 0.88−1.79; p = 0.29). Median overall survival was not reached in both treatment groups (hazard ratio 1.32; 90% CI: 0.73−2.38; p = 0.44). Grade 3−4 study-related adverse events occurred in 5% and 6% of patients. Functional antigen-specific T cell responses could be detected in 67.1% of patients tested in the nDC treatment group vs 3.8% of patients tested in the control group (p < 0.001). In conclusion, while adjuvant nDC treatment in stage IIIB/C melanoma patients generated specific immune responses and was well tolerated, no benefit in RFS was observed
    corecore