3 research outputs found

    Modification of chitosan-bead support materials with l-lysine and l-asparagine for alpha-amylase immobilization

    No full text
    WOS: 000425280600011PubMed ID: 29222588Maltose syrups have got wide-range utilizations in a variety of applications from bakery to drug-development. alpha-Amylases are among the most widely utilized industrial enzymes due to their high specificity in production of maltose syrup from starch. However, enzymes are not stable in ex vivo conditions towards alteration in pH, temperature, and such other parameters as high salt concentrations and impurities, where immobilization is required to advance the stability of the enzyme with which approach the requirement of isolation of the enzyme from media is eliminated as well. In this study, Termamyl(A (R)) alpha-amylase was immobilized on the none-modified chitosan beads (NMCB), l-lysine-modified chitosan beads (LMCB), and l-asparagine-modified chitosan beads (AMCB) to assess effects of the support material on optimum conditions and kinetic parameters of the alpha-amylase activity in production of maltose from starch. Immobilization on NMCB, LMCB, and AMCB puts a strong influence on optimum pH, optimum temperature, stability, and kinetic parameters of alpha-amylase. Modification of chitosan beads with l-lysine and l-asparagine dramatically altered the overall immobilization yield, and enzyme's response to pH and temperature variations and the kinetic parameters. AMCB provided the best immobilization yield (49%), while LMCB only improved the yield by 2% from 22 to 24%.Scientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [106M241]This study was partly supported by The Scientific and Technological Research Council of Turkey (TUBITAK) with 106M241 project number

    Selective Sensing and Imaging of Penicillium italicum Spores and Hyphae Using Carbohydrate–Lectin Interactions

    No full text
    The blue-green mold Penicillium italicum is among the most problematic post-harvest plant infections limiting the integrity of citrus and many other crops during storage and transportation, but there is no sensor for its on-site or field detection. We hereby, for the first time, report the development of novel biomolecular sensor for assessing the presence of P. italicum spores and hyphae using carbohydrate-lectin recognitions. Two approaches were developed: (i) lateral tests using standalone poly­(amic) acid (PAA) membranes and glass surfaces and (ii) quantitative tests on 96-well polystyrene plates and paper electrodes. In both cases, the surfaces were functionalized with novel derivatized sugar based ligands while staining was performed with gold nanoparticles. Both approaches provided strong signals for 10<sup>4</sup> spores/mL of P. italicum isolated from experimentally infected lemons as the lowest-reliable concentration. The 96-well plate-based gave the most sensitive detection with a 4 × 10<sup>2</sup> spores/mL limit of detection, a linear dynamic range between 2.9 × 10<sup>3</sup> and 6.02 × 10<sup>4</sup> spores/mL (<i>R</i><sup>2</sup> = 0.9939) and standard deviation of less than 5% for five replicate measurements. The selectivity of the ligands was tested against Trichaptum biforme, Glomerulla cingulata (Colletotrichum gloeosporioides), and Aspergillus nidulans fungi species. The highest selectivity was obtained using the sugar-based gold-nanoparticles toward both the spores and the hyphae of P. italicum. The advanced specificity was provided by the utilized sugar ligands employed in the synthesis of gold nanoparticles and was independent from size and shapes of the AuNPs. Accuracy of the sensor response showed dramatic dependence on the sample preparation. In the case of 5–10 min centrifugation at 600 rpm, the spores can be isolated free from hyphae and conidiophore, for which spiked recovery was up to 95% (std ±4). In contrast, for gravity-based precipitation of hyphae, the spiked recovery was 88% (std 11)
    corecore