13 research outputs found

    Quantitative cardiac magnetic resonance T2 imaging offers ability to non-invasively predict acute allograft rejection in children

    Get PDF
    BACKGROUND: Monitoring for acute allograft rejection improves outcomes after cardiac transplantation. Endomyocardial biopsy is the gold standard test defining rejection, but carries risk and has limitations. Cardiac magnetic resonance T2 mapping may be able to predict rejection in adults, but has not been studied in children. Our aim was to evaluate T2 mapping in identifying paediatric cardiac transplant patients with acute rejection. METHODS: Eleven paediatric transplant patients presenting 18 times were prospectively enrolled for non-contrast cardiac magnetic resonance at 1.5 T followed by endomyocardial biopsy. Imaging included volumetry, flow, and T2 mapping. Regions of interest were manually selected on the T2 maps using the middle-third technique in the left ventricular septal and lateral wall in a short-axis and four-chamber slice. Mean and maximum T2 values were compared with Student\u27s t-tests analysis. RESULTS: Five cases of acute rejection were identified in three patients, including two cases of grade 2R on biopsy and three cases of negative biopsy treated for clinical symptoms attributed to rejection (new arrhythmia, decreased exercise capacity). A monotonic trend between increasing T2 values and higher biopsy grades was observed: grade 0R T2 53.4 ± 3 ms, grade 1R T2 54.5 ms ± 3 ms, grade 2R T2 61.3 ± 1 ms. The five rejection cases had significantly higher mean T2 values compared to cases without rejection (58.3 ± 4 ms versus 53 ± 2 ms, p = 0.001). CONCLUSIONS: Cardiac magnetic resonance with quantitative T2 mapping may offer a non-invasive method for screening paediatric cardiac transplant patients for acute allograft rejection. More data are needed to understand the relationship between T2 and rejection in children

    Radiation-free CMR diagnostic heart catheterization in children.

    Get PDF
    BACKGROUND: Children with heart disease may require repeated X-Ray cardiac catheterization procedures, are more radiosensitive, and more likely to survive to experience oncologic risks of medical radiation. Cardiovascular magnetic resonance (CMR) is radiation-free and offers information about structure, function, and perfusion but not hemodynamics. We intend to perform complete radiation-free diagnostic right heart catheterization entirely using CMR fluoroscopy guidance in an unselected cohort of pediatric patients; we report the feasibility and safety. METHODS: We performed 50 CMR fluoroscopy guided comprehensive transfemoral right heart catheterizations in 39 pediatric (12.7 ± 4.7 years) subjects referred for clinically indicated cardiac catheterization. CMR guided catheterizations were assessed by completion (success/failure), procedure time, and safety events (catheterization, anesthesia). Pre and post CMR body temperature was recorded. Concurrent invasive hemodynamic and diagnostic CMR data were collected. RESULTS: During a twenty-two month period (3/2015 - 12/2016), enrolled subjects had the following clinical indications: post-heart transplant 33%, shunt 28%, pulmonary hypertension 18%, cardiomyopathy 15%, valvular heart disease 3%, and other 3%. Radiation-free CMR guided right heart catheterization attempts were all successful using passive catheters. In two subjects with septal defects, right and left heart catheterization were performed. There were no complications. One subject had six such procedures. Most subjects (51%) had undergone multiple (5.5 ± 5) previous X-Ray cardiac catheterizations. Retained thoracic surgical or transcatheter implants (36%) did not preclude successful CMR fluoroscopy heart catheterization. During the procedure, two subjects were receiving vasopressor infusions at baseline because of poor cardiac function, and in ten procedures, multiple hemodynamic conditions were tested. CONCLUSIONS: Comprehensive CMR fluoroscopy guided right heart catheterization was feasible and safe in this small cohort of pediatric subjects. This includes subjects with previous metallic implants, those requiring continuous vasopressor medication infusions, and those requiring pharmacologic provocation. Children requiring multiple, serial X-Ray cardiac catheterizations may benefit most from radiation sparing. This is a step toward wholly CMR guided diagnostic (right and left heart) cardiac catheterization and future CMR guided cardiac intervention. TRIAL REGISTRATION: ClinicalTrials.gov NCT02739087 registered February 17, 2016

    Computational Study of Pulmonary Flow Patterns after Repair of Transposition of Great Arteries

    No full text
    Patients that undergo the arterial switch operation (ASO) to repair transposition of great arteries (TGA) can develop abnormal pulmonary trunk morphology with significant long-term complications. In this study, cardiovascular magnetic resonance was combined with computational fluid dynamics to investigate the impact of the postoperative layout on the pulmonary flow patterns. Three ASO patients were analyzed and compared to a volunteer control. Results showed the presence of anomalous shear layer instabilities, vortical and helical structures, and turbulent-like states in all patients, particularly as a consequence of the unnatural curvature of the pulmonary bifurcation. Streamlined, mostly laminar flow was instead found in the healthy subject. These findings shed light on the correlation between the post-ASO anatomy and the presence of altered flow features, and may be useful to improve surgical planning as well as the long-term care of TGA patients

    Abnormal Pulmonary Artery Bending Correlates With Increased Right Ventricular Afterload Following the Arterial Switch Operation

    No full text
    Purpose: In transposition of great arteries, increased right ventricular (RV) afterload is observed following arterial switch operation (ASO), which is not always related to pulmonary artery (PA) stenosis. We hypothesize that abnormal PA bending from the Lecompte maneuver may affect RV afterload in the absence of stenosis. Thus, we sought to identify novel measurements of three-dimensional cardiac magnetic resonance (CMR) images of the pulmonary arteries and compare with conventional measurements in their ability to predict RV afterload. Methods: Conventional measurements and novel measurements of the pulmonary arteries were performed using CMR data from 42 ASO patients and 13 age-matched controls. Novel measurements included bending angle, normalized radius of curvature (Rc), and normalized weighted radius of curvature (Rc-w). Right ventricular systolic pressures (as the surrogate for RV afterload) were measured by either recent echocardiogram or cardiac catheterization. Results: Conventional measurements of proximal PA size correlated with differential pulmonary blood flow (r = 0.49, P = .001), but not with RV peak systolic pressures (r = −0.26, P = .18). In ASO patients, Rc-w correlated with higher RV systolic pressures (r = −0.57, P = .002). Larger neoaortic areas and rightward bending angles correlated with smaller right pulmonary artery Rc (r = −0.48, P = .001; r = 0.41, P = .01, respectively). Finally, both pulmonary arteries had significantly smaller Rc compared to normal controls. Conclusions: Pulmonary arteries exhibit abnormal bends following ASO that correlate with increased RV afterload, independent of PA stenosis. Future work should focus on clinical and hemodynamic contributions of these shape parameters

    Radiation-free CMR diagnostic heart catheterization in children

    Get PDF
    Abstract Background Children with heart disease may require repeated X-Ray cardiac catheterization procedures, are more radiosensitive, and more likely to survive to experience oncologic risks of medical radiation. Cardiovascular magnetic resonance (CMR) is radiation-free and offers information about structure, function, and perfusion but not hemodynamics. We intend to perform complete radiation-free diagnostic right heart catheterization entirely using CMR fluoroscopy guidance in an unselected cohort of pediatric patients; we report the feasibility and safety. Methods We performed 50 CMR fluoroscopy guided comprehensive transfemoral right heart catheterizations in 39 pediatric (12.7 ± 4.7 years) subjects referred for clinically indicated cardiac catheterization. CMR guided catheterizations were assessed by completion (success/failure), procedure time, and safety events (catheterization, anesthesia). Pre and post CMR body temperature was recorded. Concurrent invasive hemodynamic and diagnostic CMR data were collected. Results During a twenty-two month period (3/2015 – 12/2016), enrolled subjects had the following clinical indications: post-heart transplant 33%, shunt 28%, pulmonary hypertension 18%, cardiomyopathy 15%, valvular heart disease 3%, and other 3%. Radiation-free CMR guided right heart catheterization attempts were all successful using passive catheters. In two subjects with septal defects, right and left heart catheterization were performed. There were no complications. One subject had six such procedures. Most subjects (51%) had undergone multiple (5.5 ± 5) previous X-Ray cardiac catheterizations. Retained thoracic surgical or transcatheter implants (36%) did not preclude successful CMR fluoroscopy heart catheterization. During the procedure, two subjects were receiving vasopressor infusions at baseline because of poor cardiac function, and in ten procedures, multiple hemodynamic conditions were tested. Conclusions Comprehensive CMR fluoroscopy guided right heart catheterization was feasible and safe in this small cohort of pediatric subjects. This includes subjects with previous metallic implants, those requiring continuous vasopressor medication infusions, and those requiring pharmacologic provocation. Children requiring multiple, serial X-Ray cardiac catheterizations may benefit most from radiation sparing. This is a step toward wholly CMR guided diagnostic (right and left heart) cardiac catheterization and future CMR guided cardiac intervention. Trial registration ClinicalTrials.gov NCT02739087 registered February 17, 201
    corecore