179 research outputs found

    Phreatomagmatic volcanic hazards where rift-systems meet the sea, a study from Ambae Island, Vanuatu

    Get PDF
    Uncorrected proofAmbae Island is a mafic stratovolcano located in the northern Vanuatu volcanic arc and has a NE–SW rift-controlled elongated shape. Several hundred scoria cones and fissure-fed lava fields occur along its long axis. After many decades of quiescence, Ambae Island erupted on the 28th of November 2005, disrupting the lives of its 10,000 inhabitants. Its activity remained focused at the central (crater-lake filled) vent and this is where hazard-assessments were focused. These assessments initially neglected that maars, tephra cones and rings occur at each tip of the island where the eruptive activity occurred b500 and b300 yr B.P. The products of this explosive phreatomagmatic activity are located where the rift axis meets the sea. At the NE edge of the island five tephra rings occur, each comparable in size to those on the summit of Ambae. Along the NE coastline, a near-continuous cliff section exposes an up to 25 m thick succession of near-vent phreatomagmatic tephra units derived from closely spaced vents. This can be subdivided into two major lithofacies associations. The first association represents when the locus of explosions was below sea level and comprises matrix-supported, massive to weakly stratified beds of coarse ash and lapilli. These are dominant in the lowermost part of the sequence and commonly contain coral fragments, indicating that the loci of explosion were located within a reef or coral sediment near the syn-eruptive shoreline. The second type indicate more stable vent conditions and rapidly repeating explosions of high intensity, producing fine-grained tephra with undulatory bedding and cross-lamination as well as megaripple bedforms. These surge and fall beds are more common in the uppermost part of the succession and form a few-m-thick pile. An older tephra succession of similar character occurs below, and buried trees in growth position, as well as those flattened within base surge beds. This implies that the centre of this eruption was very near the coastline. The processes implied by these deposits are amongst the most violent forms of volcanism on this island. In addition, the lowland and coastal areas affected by these events are the most heavily populated. This circumstance is mirrored on many similar volcanic islands, including the nearby SW Pacific examples of Taveuni (Fiji), Upolu and Savai'i (Samoa), and Ambrym (Vanuatu). These locations are paradoxically often considered safe areas during summit/central-vent eruptions, simply because they are farthest from the 34 central sources of ash-fall and lahar hazard. The observations presented here necessitate a revision of this view

    Lava lakes and shallow level magmatic feeding systems of mafic volcanoes of an ocean island: Ambrym, Vanuatu (New Hebrides), South Pacific

    Get PDF
    Ambrym is an active volcanic island with 2 major vent complexes; Marum and Benbow. These vent complexes are continuously active over at least the past two thousands of years. These active vents either produce constant degassing during quite periods or sub-Plinian to Vulcanian explosive eruptions commonly influenced by magma-water interaction triggered phreatomagmatic explosive phases. The active vents of Ambrym perfectly expos inner walls of the crater/conduit transition zone, allowing to study in cross sectional view of the interbedded coherent magmatic bodies with pyroclastic successions. In the inner crater/conduit wall of the Marum volcano, that consists of at least 3 major vents, as well as a vent that is located on its flank (Niri Taten) exposes solidified complex lava lake cross-sections, lava spatter cone feeding lava pods, shallow intrusions as well as large sills that connected through a complex network of pathways to the surface and/or into the pyroclastic edifice of the volcano. This suggests that shallow level infiltration of melt into a mafic volcano plays an important role in the edifice growth

    Samoa technical report - Review of volcanic hazard maps for Savai'i and Upolu

    Get PDF
    Both main islands of Samoa, Savai'i and Upolu need to be considered as potentially volcanically active. The most recent eruptions in historic times happened on Savai'i in 1905-1911, 1902 and 1760 (estimated). Though detailed volcanic studies and dating of volcanic events are very limited there is evidence for repeated volcanic activity on both islands since the time of human occupation of the islands marked by prominent and fresh appearance of tuff cones as Tafua (= fire mountain) Savai'i, the island of Apolima, Tafua Upolu and offshore Cape Tapaga. This report examines the volcanic risks for both islands and defines for disaster management considerations potential eruption scenarios based on eyewitness accounts of previous eruptions, geological field evidence, remote sensing information and experiences from similar volcanoes. A detailed timeline of events, potential impacts and required emergency response activities are listed for the five potential eruption types (1) long-term lava field (2) short-term spatter-cone (3) explosive phreatomagmatic (4) explosive scoria-cone and (5) submarine flank collapse. Given the nature of volcanism in Samoa with hundreds of individual "one-off" volcanoes scattered along zones of structural weakness within the Savai'i - Upolu Platform - predicting the exact location of future eruption centres is impossible. At the current stage of knowledge a presentation of a volcanic hazard map is inadequate and would require additional baseline studies to statistically define recurrence intervals and areas of higher volcanic activity. Taking these limitations into account, maps showing the relative potential for new eruption vents on Upolu and Savai'i are derived from geomorphologic features. To improve our understanding and management of the volcanic risks of Samoa, suggestions for achievable future work are listed and prioritised. These recommendations include geological/volcanological baseline studies (e.g. dating/detailed analyses of past events, rock chemistry, volcano structure); installation of early warning and monitoring network (e.g. permanent GPS, seismometers); and disaster preparedness and volcanic crisis response planning

    Modern analogues for Miocene to Pleistocene alkali basaltic phreatomagmatic fields in the Pannonian Basin: "Soft-substrate" to "combined" aquifer controlled phreatomagmatism in intraplate volcanic fields

    Get PDF
    The Pannonian Basin (Central Europe) hosts numerous alkali basaltic volcanic fields in an area similar to 200 000 km2. These volcanic fields were formed in an approximate time span of 8 million years producing smallvolume volcanoes typically considered to be monogenetic. Polycyclic monogenetic volcanic complexes are also common in each field however. The original morphology of volcanic landforms, especially phreatomagmatic volcanoes, is commonly modified. by erosion, commonly aided by tectonic uplift. The phreatomagmatic volcanoes eroded to the level of their sub-surface architecture expose crater to conduit filling as well as diatreme facies of pyroclastic rock assemblages. Uncertainties due to the strong erosion influenced by tectonic uplifts, fast and broad climatic changes, vegetation cover variations, and rapidly changing fluvio-lacustrine events in the past 8 million years in the Pannonian Basin have created a need to reconstruct and visualise the paleoenvironment into which the monogenetic volcanoes erupted. Here phreatomagmatic volcanic fields of the Miocene to Pleistocene western Hungarian alkali basaltic province have been selected and compared with modern phreatomagmatic fields. It has been concluded that the Auckland Volcanic Field (AVF) in New Zealand could be viewed as a prime modern analogue for the western Hungarian phreatomagmatic fields by sharing similarities in their pyroclastic successions textures such as pyroclast morphology, type, juvenile particle ratio to accidental lithics. Beside the AVF two other, morphologically more modified volcanic fields (Pali Aike, Argentina and Jeju, Korea) show similar features to the western Hungarian examples, highlighting issues such as preservation potential of pyroclastic successions of phreatomagmatic volcanoes.Fil: Németh, Karoly. Massey University; Nueva ZelandaFil: Cronin, Shane. Massey University; Nueva ZelandaFil: Haller, Miguel Jorge F.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; ArgentinaFil: Brenna, Marco. Massey University; Nueva ZelandaFil: Csillag, Gábor. Geological Institute of Hungary; Hungrí

    Differential response of chlorophyll-a concentrations to explosive volcanism in the western South Pacific

    Get PDF
    When it is deposited in the ocean, volcanic ash has the potential to release iron and other nutrients into surface water to stimulate ocean productivity. In the western South Pacific Ocean (SPO), one of the most important volcanic ash deposition regions, occasional widespread transport of volcanic ash may supply the nutrients not only locally around source islands but also within the wider the western SPO, accompanied by phytoplankton response. Through a comparative analysis of satellite and reanalysis data for the past 19 years (2004–2022), this study reveals that four explosive volcanic eruptions, Rabaul volcano, Papua New Guinea (October, 2006), Ambae volcano, Vanuatu (July, 2018), Ulawun volcano, Papua New Guinea (June, 2019), and Hunga volcano, Tonga (January, 2022), had the most strong stratospheric injection (>15 km) and mass loading of volcanic materials over the wider the western SPO (covering an area of >765,000 km2). The transport of 2006, 2018, 2019 volcanic emissions, was not likely associated with significant ash deposition over the western SPO. However, the Hunga eruption led to the deposition of ash-laden volcanic plumes over a wide area (~2,000 km from source), and was followed by the increase in chlorophyll-a concentrations (Chl-a) in the region (~70% increase). Minor changes related to other nutrient sources (e.g., hydrothermal input) suggest a link between the increase in Chl-a and 2022 Hunga ash falls over the western SPO. Our results indicate that volcanic ash deposition has implications for phytoplankton productivity in the western SPO, and highlights the need for further research into understanding how nutrient supply alleviated limitations of phytoplankton at the community level

    Probabilistic Volcanic Hazard Assessment of the 22.5–28°S Segment of the Central Volcanic Zone of the Andes

    Get PDF
    Evaluation of volcanic hazards typically focusses on single eruptive centres or spatially restricted areas, such as volcanic fields. Expanding hazard assessments across wide regions (e.g., large sections of a continental margin) has rarely been attempted, due to the complexity of integrating temporal and spatial variability in tectonic and magmatic processes. In this study, we investigate new approaches to quantify the hazards of such long-term active and complex settings, using the example of the 22.5–28°S segment of the Central Volcanic Zone of the Andes. This research is based on the estimation of: 1) spatial probability of future volcanic activity (based on kernel density estimation using a new volcanic geospatial database), 2) temporal probability of future volcanic events, and 3) areas susceptible to volcanic flow and fall processes (based on computer modeling). Integrating these results, we produce a set of volcanic hazard maps. We then calculate the relative probabilities of population centres in the area being affected by any volcanic phenomenon. Touristic towns such as La Poma (Argentina), Toconao (Chile), Antofagasta de la Sierra (Argentina), Socaire (Chile), and Talabre (Chile) are exposed to the highest relative volcanic hazard. In addition, through this work we delineate five regions of high spatial probability (i.e., volcanic clusters), three of which correlate well with geophysical evidence of mid-crustal partial melt bodies. Many of the eruptive centres within these volcanic clusters have poorly known eruption histories and are recommended to be targeted for future work. We hope this contribution will be a useful approach to encourage probabilistic volcanic hazard assessments for other arc segments.Fil: Bertin, Daniel. University of Auckland; Nueva ZelandaFil: Lindsay, Jan M.. University of Auckland; Nueva ZelandaFil: Cronin, Shane J.. University of Auckland; Nueva ZelandaFil: de Silva, Shanaka L.. State University of Oregon; Estados UnidosFil: Connor, Charles B.. University of Florida; Estados UnidosFil: Caffe, Pablo Jorge. Universidad Nacional de Jujuy. Instituto de Ecorregiones Andinas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Ecorregiones Andinas; ArgentinaFil: Grosse, Pablo. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Báez, Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Bustos, Emilce. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Constantinescu, Robert. University of Florida; Estados Unido

    The CD100 Receptor Interacts with Its Plexin B2 Ligand to Regulate Epidermal γδ T Cell Function

    Get PDF
    Summaryγδ T cells respond rapidly to keratinocyte damage, providing essential contributions to the skin wound healing process. The molecular interactions regulating their response are unknown. Here, we identify a role for interaction of plexin B2 with the CD100 receptor in epithelial repair. In vitro blocking of plexin B2 or CD100 inhibited γδ T cell activation. Furthermore, CD100 deficiency in vivo resulted in delayed repair of cutaneous wounds due to a disrupted γδ T cell response to keratinocyte damage. Ligation of CD100 in γδ T cells induced cellular rounding via signals through ERK kinase and cofilin. Defects in this rounding process were evident in the absence of CD100-mediated signals, thereby providing a mechanistic explanation for the defective wound healing in CD100-deficient animals. The discovery of immune functions for plexin B2 and CD100 provides insight into the complex cell-cell interactions between epithelial resident γδ T cells and the neighboring cells they support
    • …
    corecore