39 research outputs found

    Simultaneous measurements of nuclear spin heat capacity, temperature and relaxation in GaAs microstructures

    Full text link
    Heat capacity of the nuclear spin system (NSS) in GaAs-based microstructures has been shown to be much greater than expected from dipolar coupling between nuclei, thus limiting the efficiency of NSS cooling by adiabatic demagnetization. It was suggested that quadrupole interaction induced by some small residual strain could provide this additional reservoir for the heat storage. We check and validate this hypothesis by combining nuclear spin relaxation measurements with adiabatic remagnetization and nuclear magnetic resonance experiments, using electron spin noise spectroscopy as a unique tool for detection of nuclear magnetization. Our results confirm and quantify the role of the quadrupole splitting in the heat storage within NSS and provide additional insight into fundamental, but still actively debated relation between a mechanical strain and the resulting electric field gradients in GaAs.Comment: 11 pages, 4 figures, 1 tabl

    Complexity of dipolar exciton Mott transition in GaN/(AlGa)N nanostructures

    Full text link
    The Mott transition from a dipolar excitonic liquid to an electron-hole plasma is demonstrated in a wide GaN/(Al,Ga)N quantum well at T=7T=7K by means of spatially-resolved magneto-photoluminescence spectroscopy. Increasing optical excitation density we drive the system from the excitonic state, characterized by a diamagnetic behavior and thus a quadratic energy dependence on the magnetic field, to the unbound electron-hole state, characterized by a linear shift of the emission energy with the magnetic field. The complexity of the system requires to take into account both the density-dependence of the exciton binding energy and the exciton-exciton interaction and correlation energy that are of the same order of magnitude. We estimate the carrier density at Mott transition as nMott≈2×1011n_\mathrm{Mott}\approx 2\times 10^{11}cm−2^{-2} and address the role played by excitonic correlations in this process. Our results strongly rely on the spatial resolution of the photoluminescence and the assessment of the carrier transport. We show, that in contrast to GaAs/(Al,Ga)As systems, where transport of dipolar magnetoexcitons is strongly quenched by the magnetic field due to exciton mass enhancement, in GaN/(Al,Ga)N the band parameters are such that the transport is preserved up to 99T.Comment: 15 pages 13 figure

    Biophysical suitability, economic pressure and land-cover change: a global probabilistic approach and insights for REDD+

    Get PDF
    There has been a concerted effort by the international scientific community to understand the multiple causes and patterns of land-cover change to support sustainable land management. Here, we examined biophysical suitability, and a novel integrated index of “Economic Pressure on Land” (EPL) to explain land cover in the year 2000, and estimated the likelihood of future land-cover change through 2050, including protected area effectiveness. Biophysical suitability and EPL explained almost half of the global pattern of land cover (R 2 = 0.45), increasing to almost two-thirds in areas where a long-term equilibrium is likely to have been reached (e.g. R 2 = 0.64 in Europe). We identify a high likelihood of future land-cover change in vast areas with relatively lower current and past deforestation (e.g. the Congo Basin). Further, we simulated emissions arising from a “business as usual” and two reducing emissions from deforestation and forest degradation (REDD) scenarios by incorporating data on biomass carbon. As our model incorporates all biome types, it highlights a crucial aspect of the ongoing REDD + debate: if restricted to forests, “cross-biome leakage” would severely reduce REDD + effectiveness for climate change mitigation. If forests were protected from deforestation yet without measures to tackle the drivers of land-cover change, REDD + would only reduce 30 % of total emissions from land-cover change. Fifty-five percent of emissions reductions from forests would be compensated by increased emissions in other biomes. These results suggest that, although REDD + remains a very promising mitigation tool, implementation of complementary measures to reduce land demand is necessary to prevent this leakage

    Spatiotemporal electronic spin fluctuations in random nuclear fields in n-CdTe

    No full text
    We report on the dynamics of electron spins in n-doped CdTe layers that differs significantly from the expected response derived from the studies dedicated to electron spin relaxation in n-GaAs. At zero magnetic field, the electron spin noise spectra exhibit a two-peak structure-a zero-frequency line and a satellite-that we attribute to the electron spin precession in a frozen random nuclear spin distribution. This implies a surprisingly long electron spin correlation time whatever the doping level, even above the Mott transition. Using spatiotemporal spin noise spectroscopy, we demonstrate that the observation of a satellite in the spin noise spectra and a fast spin diffusion are mutually exclusive. This is consistent with a shortening of the electron spin correlation time due to hopping between donors. We interpret our data via a model assuming that the low temperature spin relaxation is due to hopping between donors in presence of hyperfine and anisotropic exchange interactions. Most of our results can be interpreted in this framework. First, a transition from inhomogeneous to homogeneous broadening of the spin noise peaks and the disappearance of the satellite are observed when the hopping rate becomes larger than the Larmor period induced by the local nuclear fields. In the regime of homogeneous broadening the ratio between the spin diffusion constant and the spin relaxation rate has a value in good agreement with the Dresselhaus constant. In the regime of inhomogeneous broadening, most of the samples exhibit a broadening consistent with the distribution of local nuclear fields. We obtain a new estimate of the hyperfine constants in CdTe and a value of 0.10 Tesla for the maximum nuclear field. Finally, our study also reveals a puzzle as our samples behave as if the active donor concentration was reduced by several orders of magnitudes with respect to the nominal values
    corecore