8 research outputs found

    The probabilistic neural network architecture for high speed classification of remotely sensed imagery

    Get PDF
    In this paper we discuss a neural network architecture (the Probabilistic Neural Net or the PNN) that, to the best of our knowledge, has not previously been applied to remotely sensed data. The PNN is a supervised non-parametric classification algorithm as opposed to the Gaussian maximum likelihood classifier (GMLC). The PNN works by fitting a Gaussian kernel to each training point. The width of the Gaussian is controlled by a tuning parameter called the window width. If very small widths are used, the method is equivalent to the nearest neighbor method. For large windows, the PNN behaves like the GMLC. The basic implementation of the PNN requires no training time at all. In this respect it is far better than the commonly used backpropagation neural network which can be shown to take O(N6) time for training where N is the dimensionality of the input vector. In addition the PNN can be implemented in a feed forward mode in hardware. The disadvantage of the PNN is that it requires all the training data to be stored. Some solutions to this problem are discussed in the paper. Finally, we discuss the accuracy of the PNN with respect to the GMLC and the backpropagation neural network (BPNN). The PNN is shown to be better than GMLC and not as good as the BPNN with regards to classification accuracy

    Design of neural networks for classification of remotely sensed imagery

    Get PDF
    Classification accuracies of a backpropagation neural network are discussed and compared with a maximum likelihood classifier (MLC) with multivariate normal class models. We have found that, because of its nonparametric nature, the neural network outperforms the MLC in this area. In addition, we discuss techniques for constructing optimal neural nets on parallel hardware like the MasPar MP-1 currently at GSFC. Other important discussions are centered around training and classification times of the two methods, and sensitivity to the training data. Finally, we discuss future work in the area of classification and neural nets

    Support Vector Machines for Hyperspectral Remote Sensing Classification

    Get PDF
    The Support Vector Machine provides a new way to design classification algorithms which learn from examples (supervised learning) and generalize when applied to new data. We demonstrate its success on a difficult classification problem from hyperspectral remote sensing, where we obtain performances of 96%, and 87% correct for a 4 class problem, and a 16 class problem respectively. These results are somewhat better than other recent results on the same data. A key feature of this classifier is its ability to use high-dimensional data without the usual recourse to a feature selection step to reduce the dimensionality of the data. For this application, this is important, as hyperspectral data consists of several hundred contiguous spectral channels for each exemplar. We provide an introduction to this new approach, and demonstrate its application to classification of an agriculture scene

    Climate adaptation heuristics and the science/policy divide

    No full text
    corecore