13 research outputs found
Chaos and the Quantum Phase Transition in the Dicke Model
We investigate the quantum chaotic properties of the Dicke Hamiltonian; a
quantum-optical model which describes a single-mode bosonic field interacting
with an ensemble of two-level atoms. This model exhibits a zero-temperature
quantum phase transition in the N \go \infty limit, which we describe exactly
in an effective Hamiltonian approach. We then numerically investigate the
system at finite and, by analysing the level statistics, we demonstrate
that the system undergoes a transition from quasi-integrability to quantum
chaotic, and that this transition is caused by the precursors of the quantum
phase-transition. Our considerations of the wavefunction indicate that this is
connected with a delocalisation of the system and the emergence of macroscopic
coherence. We also derive a semi-classical Dicke model, which exhibits
analogues of all the important features of the quantum model, such as the phase
transition and the concurrent onset of chaos.Comment: 51 pages, 15 figures, late