20 research outputs found

    CRISPR nuclease off-target activity and mitigation strategies

    Get PDF
    The discovery of CRISPR has allowed site-specific genomic modification to become a reality and this technology is now being applied in a number of human clinical trials. While this technology has demonstrated impressive efficacy in the clinic to date, there remains the potential for unintended on- and off-target effects of CRISPR nuclease activity. A variety of in silico-based prediction tools and empirically derived experimental methods have been developed to identify the most common unintended effect—small insertions and deletions at genomic sites with homology to the guide RNA. However, large-scale aberrations have recently been reported such as translocations, inversions, deletions, and even chromothripsis. These are more difficult to detect using current workflows indicating a major unmet need in the field. In this review we summarize potential sequencing-based solutions that may be able to detect these large-scale effects even at low frequencies of occurrence. In addition, many of the current clinical trials using CRISPR involve ex vivo isolation of a patient’s own stem cells, modification, and re-transplantation. However, there is growing interest in direct, in vivo delivery of genome editing tools. While this strategy has the potential to address disease in cell types that are not amenable to ex vivo manipulation, in vivo editing has only one desired outcome—on-target editing in the cell type of interest. CRISPR activity in unintended cell types (both on- and off-target) is therefore a major safety as well as ethical concern in tissues that could enable germline transmission. In this review, we have summarized the strengths and weaknesses of current editing and delivery tools and potential improvements to off-target and off-tissue CRISPR activity detection. We have also outlined potential mitigation strategies that will ensure that the safety of CRISPR keeps pace with efficacy, a necessary requirement if this technology is to realize its full translational potential

    Identification of Somatic Mutations in Parathyroid Tumors Using Whole-Exome Sequencing

    Get PDF
    ContextThe underlying molecular alterations causing sporadic parathyroid adenomas that drive primary hyperparathyroidism have not been thoroughly defined.ObjectiveThe aim of the study was to investigate the occurrence of somatic mutations driving tumor formation and progression in sporadic parathyroid adenoma using whole-exome sequencing.DesignEight matched tumor-constitutional DNA pairs from patients with sporadic parathyroid adenomas underwent whole-exome capture and high-throughput sequencing. Selected genes were analyzed for mutations in an additional 185 parathyroid adenomas.ResultsFour of eight tumors displayed a frame shift deletion or nonsense mutation in MEN1, which was accompanied by loss of heterozygosity of the remaining wild-type allele. No other mutated genes were shared among the eight tumors. One tumor harbored a Y641N mutation of the histone methyltransferase EZH2 gene, previously linked to myeloid and lymphoid malignancy formation. Targeted sequencing in the additional 185 parathyroid adenomas revealed a high rate of MEN1 mutations (35%). Furthermore, this targeted sequencing identified an additional parathyroid adenoma that contained the identical, somatic EZH2 mutation that was found by exome sequencing.ConclusionThis study confirms the frequent role of the loss of heterozygosity of chromosome 11 and MEN1 gene alterations in sporadic parathyroid adenomas and implicates a previously unassociated methyltransferase gene, EZH2, in endocrine tumorigenesis

    Identification of preexisting adaptive immunity to Cas9 proteins in humans

    Get PDF
    The CRISPR-Cas9 system is a powerful tool for genome editing, which allows the precise modification of specific DNA sequences. Many efforts are underway to use the CRISPR-Cas9 system to therapeutically correct human genetic diseases1-6. The most widely used orthologs of Cas9 are derived from Staphylococcus aureus and Streptococcus pyogenes5,7. Given that these two bacterial species infect the human population at high frequencies8,9, we hypothesized that humans may harbor preexisting adaptive immune responses to the Cas9 orthologs derived from these bacterial species, SaCas9 (S. aureus) and SpCas9 (S. pyogenes). By probing human serum for the presence of anti-Cas9 antibodies using an enzyme-linked immunosorbent assay, we detected antibodies against both SaCas9 and SpCas9 in 78% and 58% of donors, respectively. We also found anti-SaCas9 T cells in 78% and anti-SpCas9 T cells in 67% of donors, which demonstrates a high prevalence of antigen-specific T cells against both orthologs. We confirmed that these T cells were Cas9-specific by demonstrating a Cas9-specific cytokine response following isolation, expansion, and antigen restimulation. Together, these data demonstrate that there are preexisting humoral and cell-mediated adaptive immune responses to Cas9 in humans, a finding that should be taken into account as the CRISPR-Cas9 system moves toward clinical trials

    Gene replacement of α-globin with β-globin restores hemoglobin balance in β-thalassemia-derived hematopoietic stem and progenitor cells

    Get PDF
    β-Thalassemia pathology is due not only to loss of β-globin (HBB), but also to erythrotoxic accumulation and aggregation of the β-globin-binding partner, α-globin (HBA1/2). Here we describe a Cas9/AAV6-mediated genome editing strategy that can replace the entire HBA1 gene with a full-length HBB transgene in β-thalassemia-derived hematopoietic stem and progenitor cells (HSPCs), which is sufficient to normalize β-globin:α-globin messenger RNA and protein ratios and restore functional adult hemoglobin tetramers in patient-derived red blood cells. Edited HSPCs were capable of long-term and bilineage hematopoietic reconstitution in mice, establishing proof of concept for replacement of HBA1 with HBB as a novel therapeutic strategy for curing β-thalassemia

    Development of β-globin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease

    Get PDF
    Sickle cell disease (SCD) is the most common serious monogenic disease with 300,000 births annually worldwide. SCD is an autosomal recessive disease resulting from a single point mutation in codon six of the β-globin gene (HBB). Ex vivo β-globin gene correction in autologous patient-derived hematopoietic stem and progenitor cells (HSPCs) may potentially provide a curative treatment for SCD. We previously developed a CRISPR-Cas9 gene targeting strategy that uses high-fidelity Cas9 precomplexed with chemically modified guide RNAs to induce recombinant adeno-associated virus serotype 6 (rAAV6)-mediated HBB gene correction of the SCD-causing mutation in HSPCs. Here, we demonstrate the preclinical feasibility, efficacy, and toxicology of HBB gene correction in plerixafor-mobilized CD34+ cells from healthy and SCD patient donors (gcHBB-SCD). We achieved up to 60% HBB allelic correction in clinical-scale gcHBB-SCD manufacturing. After transplant into immunodeficient NSG mice, 20% gene correction was achieved with multilineage engraftment. The long-term safety, tumorigenicity, and toxicology study demonstrated no evidence of abnormal hematopoiesis, genotoxicity, or tumorigenicity from the engrafted gcHBB-SCD drug product. Together, these preclinical data support the safety, efficacy, and reproducibility of this gene correction strategy for initiation of a phase 1/2 clinical trial in patients with SCD

    Non-Compliance with Growth Hormone Treatment in Children Is Common and Impairs Linear Growth

    Get PDF
    BACKGROUND: GH therapy requires daily injections over many years and compliance can be difficult to sustain. As growth hormone (GH) is expensive, non-compliance is likely to lead to suboptimal growth, at considerable cost. Thus, we aimed to assess the compliance rate of children and adolescents with GH treatment in New Zealand. METHODS: This was a national survey of GH compliance, in which all children receiving government-funded GH for a four-month interval were included. Compliance was defined as ≥ 85% adherence (no more than one missed dose a week on average) to prescribed treatment. Compliance was determined based on two parameters: either the number of GH vials requested (GHreq) by the family or the number of empty GH vials returned (GHret). Data are presented as mean ± SEM. FINDINGS: 177 patients were receiving GH in the study period, aged 12.1 ± 0.6 years. The rate of returned vials, but not number of vials requested, was positively associated with HVSDS (p < 0.05), such that patients with good compliance had significantly greater linear growth over the study period (p<0.05). GHret was therefore used for subsequent analyses. 66% of patients were non-compliant, and this outcome was not affected by sex, age or clinical diagnosis. However, Maori ethnicity was associated with a lower rate of compliance. INTERPRETATION: An objective assessment of compliance such as returned vials is much more reliable than compliance based on parental or patient based information. Non-compliance with GH treatment is common, and associated with reduced linear growth. Non-compliance should be considered in all patients with apparently suboptimal response to GH treatment
    corecore