452 research outputs found

    Proposed optical realisation of a two photon, four-qubit entangled χ\chi state

    Get PDF
    The four-qubit states χij\lvert\chi^{ij}\rangle, exhibiting genuinely multi-partite entanglement have been shown to have many interesting properties and have been suggested for novel applications in quantum information processing. In this work we propose a simple quantum circuit and its corresponding optical embodiment with which to prepare photon pairs in the χij\lvert\chi^{ij}\rangle states. Our approach uses hyper-entangled photon pairs, produced by the type-I spontaneous parametric down-conversion (SPDC) process in two contiguous nonlinear crystals, together with a set of simple linear-optical transformations. Our photon pairs are maximally hyper-entangled in both their polarisation and orbital angular momentum (OAM). After one of these daughter photons passes through our optical setup, we obtain photon pairs in the hyper-entangled state χ00\lvert\chi^{00}\rangle, and the χij\lvert\chi^{ij}\rangle states can be achieved by further simple transformations.Comment: Submitted to Journal of Optic

    Local monotonicity of Riemannian and Finsler volume with respect to boundary distances

    Full text link
    We show that the volume of a simple Riemannian metric on DnD^n is locally monotone with respect to its boundary distance function. Namely if gg is a simple metric on DnD^n and gg' is sufficiently close to gg and induces boundary distances greater or equal to those of gg, then vol(Dn,g)vol(Dn,g)vol(D^n,g')\ge vol(D^n,g). Furthermore, the same holds for Finsler metrics and the Holmes--Thompson definition of volume. As an application, we give a new proof of the injectivity of the geodesic ray transform for a simple Finsler metric.Comment: 13 pages, v3: minor corrections and clarifications, to appear in Geometriae Dedicat

    Gleason-Busch theorem for sequential measurements

    Get PDF
    Gleason's theorem is a statement that, given some reasonable assumptions, the Born rule used to calculate probabilities in quantum mechanics is essentially unique [A. M. Gleason, Indiana Univ. Math. J. 6, 885 (1957)]. We show that Gleason's theorem contains within it also the structure of sequential measurements, and along with this the state update rule. We give a small set of axioms, which are physically motivated and analogous to those in Busch's proof of Gleason's theorem [P. Busch, Phys. Rev. Lett. 91, 120403 (2003)], from which the familiar Kraus operator form follows. An axiomatic approach has practical relevance as well as fundamental interest, in making clear those assumptions which underlie the security of quantum communication protocols. Interestingly, the two-time formalism is seen to arise naturally in this approach

    Quantum data gathering

    Get PDF
    Measurement of a quantum system – the process by which an observer gathers information about it – provides a link between the quantum and classical worlds. The nature of this process is the central issue for attempts to reconcile quantum and classical descriptions of physical processes. Here, we show that the conventional paradigm of quantum measurement is directly responsible for a well-known disparity between the resources required to extract information from quantum and classical systems. We introduce a simple form of quantum data gathering, “coherent measurement”, that eliminates this disparity and restores a pleasing symmetry between classical and quantum statistical inference. To illustrate the power of quantum data gathering, we demonstrate that coherent measurements are optimal and strictly more powerful than conventional one-at-a-time measurements for the task of discriminating quantum states, including certain entangled many-body states (e.g., matrix product states)

    Optimal sequential measurements for bipartite state discrimination

    Get PDF
    State discrimination is a useful test problem with which to clarify the power and limitations of different classes of measurement. We consider the problem of discriminating between given states of a bipartite quantum system via sequential measurement of the subsystems, with classical feed-forward of measurement results. Our aim is to understand when sequential measurements, which are relatively easy to implement experimentally, perform as well, or almost as well, as optimal joint measurements, which are in general more technologically challenging. We construct conditions that the optimal sequential measurement must satisfy, analogous to the well-known Helstrom conditions for minimum error discrimination in the unrestricted case. We give several examples and compare the optimal probability of correctly identifying the state via global versus sequential measurement strategies

    Optimal discrimination of single-qubit mixed states

    Get PDF
    We consider the problem of minimum-error quantum state discrimination for single-qubit mixed states. We present a method which uses the Helstrom conditions constructively and analytically; this algebraic approach is complementary to existing geometric methods, and solves the problem for any number of arbitrary signal states with arbitrary prior probabilities.Comment: 8 pages, 1 figur

    Is coherence catalytic?

    Get PDF
    Quantum coherence, the ability to control the phases in superposition states is a resource, and it is of crucial importance, therefore, to understand how it is consumed in use. It has been suggested that catalytic coherence is possible, that is repeated use of the coherence without degradation or reduction in performance. The claim has particular relevance for quantum thermodynamics because, were it true, it would allow free energy that is locked in coherence to be extracted indefinitely\textit{indefinitely}. We address this issue directly with a careful analysis of the proposal by A˚\AA{}berg. We find that coherence cannot\textit{cannot} be used catalytically, or even repeatedly without limit.Comment: 23 pages with 2 figure

    Fabrication and Characterization of Electrostatic Quantum Dots in a Si/SiGe 2D Electron Gas, Including an Integrated Read-out Channel

    Full text link
    A new fabrication technique is used to produce quantum dots with read-out channels in silicon/silicon-germanium two-dimensional electron gases. The technique utilizes Schottky gates, placed on the sides of a shallow etched quantum dot, to control the electronic transport process. An adjacent quantum point contact gate is integrated to the side gates to define a read-out channel and thus allow for noninvasive detection of the electronic occupation of the quantum dot. Reproducible and stable Coulomb oscillations and the corresponding jumps in the read-out channel resistance are observed at low temperatures. The fabricated dot combined with the read-out channel represent a step towards the spin-based quantum bit in Si/SiGe heterostructures.Comment: 3 pages, 4 fig

    Sputtered Gold as an Effective Schottky Gate for Strained Si/SiGe Nanostructures

    Full text link
    Metallization of Schottky surface gates by sputtering Au on strained Si/SiGe heterojunctions enables the depletion of the two dimensional electron gas (2DEG) at a relatively small voltage while maintaining an extremely low level of leakage current. A fabrication process has been developed to enable the formation of sub-micron Au electrodes sputtered onto Si/SiGe without the need of a wetting layer.Comment: 3 pages, 3 figure
    corecore