5,357 research outputs found
No Evidence for Orbital Loop Currents in Charge Ordered YBaCuO from Polarized Neutron Diffraction
It has been proposed that the pseudogap state of underdoped cuprate
superconductors may be due to a transition to a phase which has circulating
currents within each unit cell. Here, we use polarized neutron diffraction to
search for the corresponding orbital moments in two samples of underdoped
YBaCuO with doping levels and 0.123. In contrast to
some other reports using polarized neutrons, but in agreement with nuclear
magnetic resonance and muon spin rotation measurements, we find no evidence for
the appearance of magnetic order below 300 K. Thus, our experiment suggests
that such order is not an intrinsic property of high-quality cuprate
superconductor single crystals. Our results provide an upper bound for a
possible orbital loop moment which depends on the pattern of currents within
the unit cell. For example, for the CC- pattern proposed by Varma,
we find that the ordered moment per current loop is less than 0.013 for
.Comment: Comments in arXiv:1710.08173v1 fully addresse
Constraining quasar host halo masses with the strength of nearby Lyman-alpha forest absorption
Using cosmological hydrodynamic simulations we measure the mean transmitted
flux in the Lyman alpha forest for quasar sightlines that pass near a
foreground quasar. We find that the trend of absorption with pixel-quasar
separation distance can be fitted using a simple power law form including the
usual correlation function parameters r_{0} and \gamma so that ( = \sum
exp(-tau_eff*(1+(r/r_{0})^(-\gamma)))). From the simulations we find the
relation between r_{0} and quasar mass and formulate this as a way to estimate
quasar host dark matter halo masses, quantifying uncertainties due to
cosmological and IGM parameters, and redshift errors. With this method, we
examine data for ~3000 quasars from the Sloan Digital Sky Survey (SDSS) Data
Release 3, assuming that the effect of ionizing radiation from quasars (the
so-called transverse proximity effect) is unimportant (no evidence for it is
seen in the data.) We find that the best fit host halo mass for SDSS quasars
with mean redshift z=3 and absolute G band magnitude -27.5 is log10(M/M_sun) =
12.48^{+0.53}_{-0.89}. We also use the Lyman-Break Galaxy (LBG) and Lyman alpha
forest data of Adelberger et al in a similar fashion to constrain the halo mass
of LBGs to be log10(M/M_sun) = 11.13^{+0.39}_{-0.55}, a factor of ~20 lower
than the bright quasars. In addition, we study the redshift distortions of the
Lyman alpha forest around quasars, using the simulations. We use the quadrupole
to monopole ratio of the quasar-Lyman alpha forest correlation function as a
measure of the squashing effect. We find that this does not have a measurable
dependence on halo mass, but may be useful for constraining cosmic geometry.Comment: 10 pages, 11 figures, submitted to MNRA
Warm-Hot Gas in and around the Milky Way: Detection and Implications of OVII Absorption toward LMC X-3
X-ray absorption lines of highly-ionized species such as OVII at about zero
redshift have been firmly detected in the spectra of several active galactic
nuclei. However, the location of the absorbing gas remains a subject of debate.
To separate the Galactic and extragalactic contributions to the absorption, we
have obtained Chandra LETG-HRC and FUSE observations of the black hole X-ray
binary LMC X--3. A joint analysis of the detected OVII and Ne IX Kalpha lines,
together with the non-detection of the OVII Kbeta and OVIII Kalpha lines, gives
the measurements of the temperature, velocity dispersion, and hot oxygen column
density. The X-ray data also allow us to place a 95% confidence lower limit to
the Ne/O ratio as 0.14. The OVII line centroid and its relative shift from the
Galactic OI Kalpha absorption line, detected in the same observations, are
inconsistent with the systemic velocity of LMC X--3 ().
The far-UV spectrum shows OVI absorption at Galactic velocities, but no OVI
absorption is detected at the LMC velocity at significance. Both
the nonthermal broadening and the decreasing scale height with the increasing
ionization state further suggest an origin of the highly-ionized gas in a
supernova-driven galactic fountain. In addition, we estimate the warm and hot
electron column densities from our detected OVII Kalpha line in the LMC X--3
X-ray spectra and from the dispersion measure of a pulsar in the LMC vicinity.
We then infer the O/H ratio of the gas to be ,
consistent with the chemically-enriched galactic fountain scenario. We conclude
that the Galactic hot interstellar medium should in general substantially
contribute to zero-redshift X-ray absorption lines in extragalactic sources.Comment: 11 pages, accepted for publication in Ap
The Acoustic Peak in the Lyman Alpha Forest
We present the first simulation of the signature of baryonic acoustic
oscillations (BAO) in Lyman alpha forest data containing 180,000 mock quasar
sight-lines. We use eight large dark-matter only simulations onto which we
paint the Lyman alpha field using the fluctuating Gunn-Peterson approximation.
We argue that this approach should be sufficient for the mean signature on the
scales of interest. Our results indicate that Lyman alpha flux provides a good
tracer of the underlying dark matter field on large scales and that redshift
space distortions are well described by a simple linear theory prescription. We
compare Fourier and configuration space approaches to describing the signal and
argue that configuration space statistics provide useful data compression. We
also investigate the effect of a fluctuating photo-ionizing background using a
simplified model and find that such fluctuations do add smooth power on large
scales. The acoustic peak position is, however, unaffected for small amplitude
fluctuations (<10%). Larger amplitude fluctuations make the recovery of the BAO
signal more difficult and may degrade the achievable significance of the
measurement.Comment: 10 pages, 8 figures; v2: minor revision matching version accepted by
JCAP (new references, better figures, clarifications
Bias, redshift space distortions and primordial nongaussianity of nonlinear transformations: application to Lyman alpha forest
On large scales a nonlinear transformation of matter density field can be
viewed as a biased tracer of the density field itself. A nonlinear
transformation also modifies the redshift space distortions in the same limit,
giving rise to a velocity bias. In models with primordial nongaussianity a
nonlinear transformation generates a scale dependent bias on large scales. We
derive analytic expressions for these for a general nonlinear transformation.
These biases can be expressed entirely in terms of the one point distribution
function (PDF) of the final field and the parameters of the transformation. Our
analysis allows one to devise nonlinear transformations with nearly arbitrary
bias properties, which can be used to increase the signal in the large scale
clustering limit. We apply the results to the ionizing equilibrium model of
Lyman-alpha forest, in which Lyman-alpha flux F is related to the density
perturbation delta via a nonlinear transformation. Velocity bias can be
expressed as an average over the Lyman-alpha flux PDF. At z=2.4 we predict the
velocity bias of -0.1, compared to the observed value of -0.13 +/- 0.03. Bias
and primordial nongaussianity bias depend on the parameters of the
transformation. Measurements of bias can thus be used to constrain these
parameters, and for reasonable values of the ionizing background intensity we
can match the predictions to observations. Matching to the observed values we
predict the ratio of primordial nongaussianity bias to bias to have the
opposite sign and lower magnitude than the corresponding values for the highly
biased galaxies, but this depends on the model parameters and can also vanish
or change the sign.Comment: 18 pages, 1 figur
Generation of Vorticity and Velocity Dispersion by Orbit Crossing
We study the generation of vorticity and velocity dispersion by orbit
crossing using cosmological numerical simulations, and calculate the
backreaction of these effects on the evolution of large-scale density and
velocity divergence power spectra. We use Delaunay tessellations to define the
velocity field, showing that the power spectra of velocity divergence and
vorticity measured in this way are unbiased and have better noise properties
than for standard interpolation methods that deal with mass weighted
velocities. We show that high resolution simulations are required to recover
the correct large-scale vorticity power spectrum, while poor resolution can
spuriously amplify its amplitude by more than one order of magnitude. We
measure the scalar and vector modes of the stress tensor induced by orbit
crossing using an adaptive technique, showing that its vector modes lead, when
input into the vorticity evolution equation, to the same vorticity power
spectrum obtained from the Delaunay method. We incorporate orbit crossing
corrections to the evolution of large scale density and velocity fields in
perturbation theory by using the measured stress tensor modes. We find that at
large scales (k~0.1 h/Mpc) vector modes have very little effect in the density
power spectrum, while scalar modes (velocity dispersion) can induce percent
level corrections at z=0, particularly in the velocity divergence power
spectrum. In addition, we show that the velocity power spectrum is smaller than
predicted by linear theory until well into the nonlinear regime, with little
contribution from virial velocities.Comment: 27 pages, 14 figures. v2: reorganization of the material, new
appendix. Accepted by PR
Reply to "Comment on `No evidence for orbital loop currents in charge-ordered YBaCuO from polarized neutron diffraction' "
The issues raised in the preceding comment of Bourges et al.
[arXiv:1710.08173, Phys. Rev. B 98, 016501 (2018)] are shown to be unfounded.
We highlight the complications caused by inhomogeneous beam polarization that
can occur when using polarized neutron diffraction to detect small magnetic
moments.Comment: 8 pages, supplementary material include
Elsevier Editorial System(tm) for Renewable Energy Manuscript Draft Manuscript Number: Title: Planning Tidal Stream Turbine Array Layouts Using a Coupled Blade Element Momentum -Computational Fluid Dynamics Model
. Planning tidal stream turbine array layouts using a coupled blade element momentum -computational fluid dynamics model. Renewable Energy, 63,[46][47][48][49][50][51][52][53][54] http://dx.doi.org/10.1016/j.renene.2013.08.039 _____________________________________________________________ This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions. When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO database to judge whether or not it is copyright safe to add this version of the paper to this repository. Abstract: A coupled blade element momentum -computational fluid dynamics (BEM-CFD) model is used to conduct simulations of groups of tidal stream turbines. Simulations of single, double and triple turbine arrangements are conducted first to evaluate the effects of turbine spacing and arrangement on flow dynamics and rotor performance. Wake recovery to free-stream conditions was independent of flow velocity. Trends identified include significant improvement of performance for the downstream rotor where longitudinal spacing between a longitudinally aligned pair is maximised, whereas maintaining a lateral spacing between two devices of two diameters or greater increases the potential of benefitting from flow acceleration between them. This could significantly improve the performance of a downstream device, particularly where the longitudinal spacing between the two rows is two diameters or less. Due to the computational efficiency of this modelling approach, particularly when compared to transient computational fluid dynamics simulations of rotating blades, the BEM-CFD model can simulate larger numbers of devices. An example of how an understanding of the hydrodynamics around devices are affected by rotor spacing can be used to optimise the performance of a 14 turbine array is presented. Compared to a regular staggered configuration, the total power output of the array was increased by over 10%. Highlights for a longitudinally spaced pair of turbines, the downstream device will have a lower performance even at 40 diameters' spacing because wake recovery is slow. for a low lateral spacing between a pair of turbines (3 diameters or less), flow recovery is slow between them because of wake expansion. flow acceleration between a pair of laterally spaced turbines can improve the performance of a third device positioned further downstream but laterally between them. the most benefit from such flow acceleration is gained by minimising the longitudinal spacing between the two rows of devices. for a small lateral spacing, performance of the downstream device is compromised. based on the patterns observed for two and three turbine arrangements, the overall performance of a 14 turbine staggered array was improved by over 10%. ABSTRACT A coupled blade element momentum -computational fluid dynamics (BEM-CFD) model is used to conduct simulations of groups of tidal stream turbines. Simulations of single, double and triple turbine arrangements are conducted first to evaluate the effects of turbine spacing and arrangement on flow dynamics and rotor performance. Wake recovery to free-stream conditions was independent of flow velocity. Trends identified include significant improvement of performance for the downstream rotor where longitudinal spacing between a longitudinally aligned pair is maximised, whereas maintaining a lateral spacing between two devices of two diameters or greater increases the potential of benefitting from flow acceleration between them. This could significantly improve the performance of a downstream device, particularly where the longitudinal spacing between the two rows is two diameters or less. Due to the computational efficiency of this modelling approach, particularly when compared to transient computational fluid dynamics simulations of rotating blades, the BEM-CFD model can simulate larger numbers of devices. An example of how an understanding of the hydrodynamics around devices are affected by rotor spacing can be used to optimise the performance of a 14 turbine array is presented. Compared to a regular staggered configuration, the total power output of the array was increased by over 10%
- …