5,108 research outputs found

    The influence of risk factors associated with captive rearing on post-release survival in translocated cirl buntings Emberiza cirlus in the UK

    Get PDF
    Population decline resulting from agricultural intensification led to contraction of the range of the cirl bunting Emberiza cirlus in the UK to a small area of south Devon. As part of the UK Biodiversity Action Plan for the species, a project to re-establish a population in suitable habitat in Cornwall was undertaken during 2006–2011, in which chicks were removed from the nest in Devon, hand-reared and then delayed-released. The survival of the birds to four time points in the year after release was analysed in relation to the effect of rearing factors, using a multivariable logistic regression model. Individuals with higher body weight at capture were more likely to survive to 1 January and 1 May in the year following release, and individuals released in June and July were more likely to survive than those released in August. Individuals released in 2006 and 2011 had a higher survival rate than those released during 2007–2010. Timing of capture, time spent at each stage in captivity, medication and the detection of parasites in the brood had no significant effect. Immunosuppressive disease, weather factors and predator activity may have led to some of the observed differences in survival. This analysis provides evidence with which to plan future translocation projects for cirl buntings and other passerine birds

    Correlation Function of Galaxy Groups

    Full text link
    We use the Updated Zwicky Catalog of galaxies (Falco et al. 1999) to generate a catalog of groups, by means of a friend-of-friend algorithm. The correlation length of the total sample is well fitted with a power law Ο(r)=(r/r0)Îł \xi(r)=(r/r_0)^\gamma with parameters r0=9.0±0.4h−1Mpcr_0=9.0 \pm 0.4 h^{-1}Mpc and Îł=−1.67±0.09\gamma = -1.67 \pm 0.09 for values of r<70h−1Mpcr<70 h^{-1} Mpc. Three subsamples defined by the range of group virial masses M{\cal M} were used to have their clustering properties examined throughout the autocorrelation function. We find an increase of the amplitude of the correlation function according to the group masses which extends the results of the r0−dc r_0-d_c relation for galaxy systems at small dcd_c. For completeness we have also analyzed a sample of groups obtained from the Southern Sky Redshift Survey (da Costa et al.1998) in the range of virial masses 5×1012M⊙<M<4×1014M⊙5\times10^{12}M_{\odot}<{\cal M}<4\times10^{14}M_{\odot} to compare the results with those obtained from GUZC.Comment: 9 figures, accepted for publication in Ap

    Cosmological Limits on the Neutrino Mass from the Lya Forest

    Full text link
    The Lya forest in quasar spectra probes scales where massive neutrinos can strongly suppress the growth of mass fluctuations. Using hydrodynamic simulations with massive neutrinos, we successfully test techniques developed to measure the mass power spectrum from the forest. A recent observational measurement in conjunction with a conservative implementation of other cosmological constraints places upper limits on the neutrino mass: m_nu < 5.5 eV for all values of Omega_m, and m_nu < 2.4 (Omega_m/0.17 -1) eV, if 0.2 < Omega_m <0.5 as currently observationally favored (both 95 % C.L.).Comment: 4 pages, 2 ps figures, REVTex, submitted to Phys. Rev. Let

    Warm-Hot Gas in and around the Milky Way: Detection and Implications of OVII Absorption toward LMC X-3

    Get PDF
    X-ray absorption lines of highly-ionized species such as OVII at about zero redshift have been firmly detected in the spectra of several active galactic nuclei. However, the location of the absorbing gas remains a subject of debate. To separate the Galactic and extragalactic contributions to the absorption, we have obtained Chandra LETG-HRC and FUSE observations of the black hole X-ray binary LMC X--3. A joint analysis of the detected OVII and Ne IX Kalpha lines, together with the non-detection of the OVII Kbeta and OVIII Kalpha lines, gives the measurements of the temperature, velocity dispersion, and hot oxygen column density. The X-ray data also allow us to place a 95% confidence lower limit to the Ne/O ratio as 0.14. The OVII line centroid and its relative shift from the Galactic OI Kalpha absorption line, detected in the same observations, are inconsistent with the systemic velocity of LMC X--3 (+310kms−1+310 {\rm km s^{-1}}). The far-UV spectrum shows OVI absorption at Galactic velocities, but no OVI absorption is detected at the LMC velocity at >3σ> 3\sigma significance. Both the nonthermal broadening and the decreasing scale height with the increasing ionization state further suggest an origin of the highly-ionized gas in a supernova-driven galactic fountain. In addition, we estimate the warm and hot electron column densities from our detected OVII Kalpha line in the LMC X--3 X-ray spectra and from the dispersion measure of a pulsar in the LMC vicinity. We then infer the O/H ratio of the gas to be ≳8×10−5\gtrsim 8 \times 10^{-5}, consistent with the chemically-enriched galactic fountain scenario. We conclude that the Galactic hot interstellar medium should in general substantially contribute to zero-redshift X-ray absorption lines in extragalactic sources.Comment: 11 pages, accepted for publication in Ap

    #Bieber + #Blast = #BieberBlast: Early Prediction of Popular Hashtag Compounds

    Full text link
    Compounding of natural language units is a very common phenomena. In this paper, we show, for the first time, that Twitter hashtags which, could be considered as correlates of such linguistic units, undergo compounding. We identify reasons for this compounding and propose a prediction model that can identify with 77.07% accuracy if a pair of hashtags compounding in the near future (i.e., 2 months after compounding) shall become popular. At longer times T = 6, 10 months the accuracies are 77.52% and 79.13% respectively. This technique has strong implications to trending hashtag recommendation since newly formed hashtag compounds can be recommended early, even before the compounding has taken place. Further, humans can predict compounds with an overall accuracy of only 48.7% (treated as baseline). Notably, while humans can discriminate the relatively easier cases, the automatic framework is successful in classifying the relatively harder cases.Comment: 14 pages, 4 figures, 9 tables, published in CSCW (Computer-Supported Cooperative Work and Social Computing) 2016. in Proceedings of 19th ACM conference on Computer-Supported Cooperative Work and Social Computing (CSCW 2016

    IoTSan: Fortifying the Safety of IoT Systems

    Full text link
    Today's IoT systems include event-driven smart applications (apps) that interact with sensors and actuators. A problem specific to IoT systems is that buggy apps, unforeseen bad app interactions, or device/communication failures, can cause unsafe and dangerous physical states. Detecting flaws that lead to such states, requires a holistic view of installed apps, component devices, their configurations, and more importantly, how they interact. In this paper, we design IoTSan, a novel practical system that uses model checking as a building block to reveal "interaction-level" flaws by identifying events that can lead the system to unsafe states. In building IoTSan, we design novel techniques tailored to IoT systems, to alleviate the state explosion associated with model checking. IoTSan also automatically translates IoT apps into a format amenable to model checking. Finally, to understand the root cause of a detected vulnerability, we design an attribution mechanism to identify problematic and potentially malicious apps. We evaluate IoTSan on the Samsung SmartThings platform. From 76 manually configured systems, IoTSan detects 147 vulnerabilities. We also evaluate IoTSan with malicious SmartThings apps from a previous effort. IoTSan detects the potential safety violations and also effectively attributes these apps as malicious.Comment: Proc. of the 14th ACM CoNEXT, 201

    Observation of Changes in the Atomic and Electronic Structure of Single-Crystal YBa₂Cu₃O₆.₆ Accompanying Bromination

    Get PDF
    To ascertain the role of bromination in the recovery of superconductivity in underdoped YBa2Cu3O6+y (YBCO), we have performed polarized multiple-edge x-ray-absorption fine structure (XAFS) measurements on normal (y~0.6) and brominated (Br/Cu~1/30, y~0.6) single crystals with superconducting transitions at 63 and 89 K, respectively. The brominated sample becomes strongly heterogeneous on an atomic length scale. Approximately one-third of YBCO is locally decomposed yet incorporated as a well-ordered host lattice as nanoscale regions. The decomposed phase consists of heavily distorted domains with an order not following that of the host lattice. Structurally, these domains are fragments of the YBCO lattice that are discontinued along the Cu(1)-O(1) containing planes. The local structure is consistent with the cluster expansions: Y-O(2,3)8-Cu(2)8-..., Ba-O8-Cu(2)4Cu(1)2-..., and Cu-O4... about the Y, Ba, and Cu sites. Interatomic distances and Debye-Waller factors for the expansions were determined from fits to Y K-, Ba L3-, and Cu K-edge XAFS data at room temperature. Br K-edge data reveal that Br does not enter substitutionally or interstitially into the perfect YBCO lattice. However, Br does occupy the Cu(1) sites in a nanofragment of the YBCO lattice, forming Br-O(4)-Ba-Cu2(1)Cu(2)-... nanoclusters. From polarized measurements these nanoclusters were found to be almost randomly oriented with respect to the host crystal, and probably are the nucleus of the decomposed phase. This heterogeneity brings about the unusual structural and electronic properties of the normal state previously reported in the literature. Implications on for diffraction, transport, and magnetization measurements are discussed

    The redshift-space two-point correlation functions of galaxies and groups in the Nearby Optical Galaxy sample

    Get PDF
    We use the two-point correlation function in redshift space, Ο(s)\xi(s), to study the clustering of the galaxies and groups of the Nearby Optical Galaxy (NOG) sample, which is a nearly all-sky, complete, magnitude-limited sample of ∌\sim7000 bright and nearby optical galaxies. The correlation function of galaxies is well described by a power law, Ο(s)=(s/s0)−γ\xi(s)=(s/s_0)^{-\gamma}, with slope ÎłâˆŒ1.5\gamma\sim1.5 and s0∌6.4h−1s_0\sim6.4 h^{-1}Mpc (on scales 2.7−12h−12.7 - 12 h^{-1}Mpc), in agreement with previous results of several redshift surveys of optical galaxies. We confirm the existence of morphological segregation between early- and late-type galaxies and, in particular, we find a gradual decreasing of the strength of clustering from the S0 galaxies to the late-type spirals, on intermediate scales. Furthermore, luminous galaxies turn out to be more clustered than dim galaxies. The luminosity segregation, which is significant for both early- and late-type objects, starts to become appreciable only for galaxies brighter than MB∌−19.5+5log⁥hM_B\sim -19.5 + 5 \log h (∌0.6L∗\sim 0.6 L^*) and is independent on scale. The NOG group correlation functions are characterized by s0s_0-values ranging from ∌8h−1\sim 8 h^{-1} Mpc (for groups with at least three members) to ∌10h−1\sim10 h^{-1} Mpc (for groups with at least five members). The degree of group clustering depends on the physical properties of groups. Specifically, groups with greater velocity dispersions, sizes and masses tend to be more clustered than those with lower values of these quantities.Comment: Astrophysical Journal, in press, 72 pages, 16 eps figure

    Technique for Direct eV-Scale Measurements of the Mu and Tau Neutrino Masses Using Supernova Neutrinos

    Get PDF
    Early black hole formation in a core-collapse supernova will abruptly truncate the neutrino fluxes. The sharp cutoff can be used to make model-independent time-of-flight neutrino mass tests. Assuming a neutrino luminosity of 105210^{52} erg/s per flavor at cutoff and a distance of 10 kpc, SuperKamiokande can detect an electron neutrino mass as small as 1.8 eV, and the proposed OMNIS detector can detect mu and tau neutrino masses as small as 6 eV. This {\it Letter} presents the first technique with direct sensitivity to eV-scale mu and tau neutrino masses.Comment: 4 pages including 3 inline figures. Submitted to Physical Review Letter

    Constraints on the Neutrino Mass from SZ Surveys

    Full text link
    Statistical measures of galaxy clusters are sensitive to neutrino masses in the sub-eV range. We explore the possibility of using cluster number counts from the ongoing PLANCK/SZ and future cosmic-variance-limited surveys to constrain neutrino masses from CMB data alone. The precision with which the total neutrino mass can be determined from SZ number counts is limited mostly by uncertainties in the cluster mass function and intracluster gas evolution; these are explicitly accounted for in our analysis. We find that projected results from the PLANCK/SZ survey can be used to determine the total neutrino mass with a (1\sigma) uncertainty of 0.06 eV, assuming it is in the range 0.1-0.3 eV, and the survey detection limit is set at the 5\sigma significance level. Our results constitute a significant improvement on the limits expected from PLANCK/CMB lensing measurements, 0.15 eV. Based on expected results from future cosmic-variance-limited (CVL) SZ survey we predict a 1\sigma uncertainty of 0.04 eV, a level comparable to that expected when CMB lensing extraction is carried out with the same experiment. A few percent uncertainty in the mass function parameters could result in up to a factor \sim 2-3 degradation of our PLANCK and CVL forecasts. Our analysis shows that cluster number counts provide a viable complementary cosmological probe to CMB lensing constraints on the total neutrino mass.Comment: Replaced with a revised version to match the MNRAS accepted version. arXiv admin note: text overlap with arXiv:1009.411
    • 

    corecore