6 research outputs found

    A Method for measuring the upper limb motion and computing a compatible exoskeleton trajectory

    Get PDF
    International audienceThis paper deals with the problem of computing trajectories for an exoskeleton that match a motion recorded on a given subject. Literature suggests that this problem can be solved by reconstructing the subject's joint motion using one of the numerous models available, and then feeding the exoskeleton with the joint trajectories. This is founded on the assumption that the exoskeleton kinematics reproduces the human kinematics. In practice, though, mismatches are unavoidable and lead to inaccuracies. We thus developed a method that is primarily based on an appropriate mechanical design: passive mechanisms are used to connect the exoskeleton with splints wore by the subject, in such a way that, within the workspace, there always exists a posture of the exoskeleton compatible with a given position and orientation of the splints. The trajectory computing method, by itself, consists of recording the position and orientation of the splints thanks to a conventional 3D motion tracker and to exploit standard robotics tools in order to compute an exoskeleton posture compatible with the measured human posture. Conclusive experimental results involving an existing 4 DoF upper-limb exoskeleton are shown

    Robotic exoskeletons: A perspective for the rehabilitation of arm coordination in stroke patients

    Get PDF
    Upper-limb impairment after stroke is caused by weakness, loss of individual joint control, spasticity, and abnormal synergies. Upper-limb movement frequently involves abnormal, stereotyped, and fixed synergies, likely related to the increased use of sub-cortical networks following the stroke. The flexible coordination of the shoulder and elbow joints is also disrupted. New methods for motor learning, based on the stimulation of activity- dependent neural plasticity have been developed. These include robots that can adaptively assist active movements and generate many movement repetitions. However, most of these robots only control the movement of the hand in space. The aim of the present text is to analyze the potential of robotic exoskeletons to specifically rehabilitate joint motion and particularly inter-joint coordination. First, a review of studies on upper-limb coordination in stroke patients is presented and the potential for recovery of coordination is examined. Second, issues relating to the mechanical design of exoskeletons and the transmission of constraints between the robotic and human limbs are discussed. The third section considers the development of different methods to control exoskeletons: existing rehabilitation devices and approaches to the control and rehabilitation of joint coordinations are then reviewed, along with preliminary clinical results available. Finally, perspectives and future strategies for the design of control mechanisms for rehabilitation exoskeletons are discussed

    Upper-limb robotic exoskeletons for neurorehabilitation: A review on control strategies

    No full text
    Since the late 1990s, there has been a burst of research on robotic devices for poststroke rehabilitation. Robot-mediated therapy produced improvements on recovery of motor capacity; however, so far, the use of robots has not shown qualitative benefit over classical therapist-led training sessions, performed on the same quantity of movements. Multidegree-of-freedom robots, like the modern upper-limb exoskeletons, enable a distributed interaction on the whole assisted limb and can exploit a large amount of sensory feedback data, potentially providing new capabilities within standard rehabilitation sessions. Surprisingly, most publications in the field of exoskeletons focused only on mechatronic design of the devices, while little details were given to the control aspects. On the contrary, we believe a paramount aspect for robots potentiality lies on the control side. Therefore, the aim of this review is to provide a taxonomy of currently available control strategies for exoskeletons for neurorehabilitation, in order to formulate appropriate questions toward the development of innovative and improved control strategies
    corecore