36 research outputs found

    Permanent 125I-seed prostate brachytherapy: early prostate specific antigen value as a predictor of PSA bounce occurrence

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To evaluate predictive factors for PSA bounce after <sup>125</sup>I permanent seed prostate brachytherapy and identify criteria that distinguish between benign bounces and biochemical relapses.</p> <p>Materials and methods</p> <p>Men treated with exclusive permanent <sup>125</sup>I seed brachytherapy from November 1999, with at least a 36 months follow-up were included. Bounce was defined as an increase ≥ 0.2 ng/ml above the nadir, followed by a spontaneous return to the nadir. Biochemical failure (BF) was defined using the criteria of the Phoenix conference: nadir +2 ng/ml.</p> <p>Results</p> <p>198 men were included. After a median follow-up of 63.9 months, 21 patients experienced a BF, and 35.9% had at least one bounce which occurred after a median period of 17 months after implantation (4-50). Bounce amplitude was 0.6 ng/ml (0.2-5.1), and duration was 13.6 months (4.0-44.9). In 12.5%, bounce magnitude exceeded the threshold defining BF. Age at the time of treatment and high PSA level assessed at 6 weeks were significantly correlated with bounce but not with BF. Bounce patients had a higher BF free survival than the others (100% versus 92%, p = 0,007). In case of PSA increase, PSA doubling time and velocity were not significantly different between bounce and BF patients. Bounces occurred significantly earlier than relapses and than nadir + 0.2 ng/ml in BF patients (17 vs 27.8 months, p < 0.0001).</p> <p>Conclusion</p> <p>High PSA value assessed 6 weeks after brachytherapy and young age were significantly associated to a higher risk of bounces but not to BF. Long delays between brachytherapy and PSA increase are more indicative of BF.</p

    PSA bounce versus biochemical failure following prostate brachytherapy

    No full text

    Testosterone therapy does not increase the risks of prostate cancer recurrence or death after definitive treatment for localized disease

    No full text
    BACKGROUND: The safety of testosterone therapy (TT) after definitive treatment for localized prostate cancer remains undefined. We analyzed the risks of biochemical recurrence and mortality in men receiving TT after treatment for localized prostate cancer. METHODS: Cohort analysis using the national US Veterans Affairs Informatics and Computing Infrastructure. We identified 69,984 patients with localized prostate cancer diagnosed from 2001 to 2015 treated with surgery or radiation. We coded receipt of TT after treatment as a time-dependent covariate; used the National Death Index to identify cause of death; and defined biochemical recurrence as PSA &gt; 0.2 ng/mL after surgery and nadir + 2 ng/mL after radiation. We analyzed recurrence and mortality using cumulative incidence curves, Fine-Gray competing risk regression, and Cox regression. RESULTS: This cohort included 28,651 surgery patients and 41,333 radiation patients, of whom 469 (1.64%) and 543 (1.31%), respectively, received TT with a median follow-up of 6.95 years. Comparing testosterone users to nonusers, there were no between-group differences in biochemical recurrence, prostate cancer-specific mortality, or overall mortality after surgery [hazard ratios (HR): 1.07; HR: 0.72 (p = 0.43); and HR: 1.11 (p = 0.43), respectively] or radiation [HR: 1.07; HR: 1.02 (p = 0.95); and HR: 1.02 (p = 0.86), respectively]. Limitations included lack of detailed data on TT duration and serum testosterone concentrations. CONCLUSIONS: In this multi-ethnic national cohort, TT did not increase the risks of biochemical recurrence or prostate cancer-specific or overall mortality after surgery or radiation. These data suggest that TT is safe in appropriate men after definitive treatment of localized prostate cancer
    corecore