3 research outputs found

    Design and Optimization of a High-Time-Resolution Magnetic Plasma Analyzer (MPA)

    Full text link
    In-situ measurements of space plasma throughout the solar system require high time resolution to understand the plasma's kinetic fine structure and evolution. In this context, research~is conducted to design instruments with the capability to acquire the plasma velocity distribution and its moments with high cadence. We study a new instrument design, using a constant magnetic field generated by two permanent magnets, to analyze solar wind protons and α\alpha-particles with high time resolution. We determine the optimal configuration of the instrument in terms of aperture size, sensor position, pixel size and magnetic field strength. We conduct this analysis based on analytical calculations and SIMION simulations of the particle trajectories in our instrument. We evaluate the velocity resolution of the instrument as well as Poisson errors associated with finite counting statistics. Our instrument is able to resolve Maxwellian and κ\kappa-distributions for both protons and α\alpha-particles. This method retrieves measurements of the moments (density, bulk speed and temperature) with a relative error below 1%. Our instrument design achieves these results with an acquisition time of only 5 ms, significantly faster than state-of-the-art electrostatic analyzers. Although the instrument only acquires one-dimensional cuts of the distribution function in velocity space, the simplicity and reliability of the presented instrument concept are two key advantages of our new design

    Optimization and experimental measurements of high impedance niobium-silicon (NbSi) transition edge sensors (TES) for high spectral and spatial resolution x-ray space-borne telescopes

    No full text
    International audiencepace-borne x-ray observations of supernova remnants, galactic clusters, x-ray binaries, and black holes are key elements in determining the structure of the universe. Astronomers require wide field of view with high spatial resolution but also very high spectral resolution to determine the physical conditions (temperatures, element abundances) with great accuracy. Today’s technologies (mostly TESs) obtain very high spectral resolutions to the detriment of power consumption, mostly due to their cold stage SQUID readout electronics. Their high power consumption limits the instrument’s field of view (FoV) by constraining the total number of pixels affordable at the 50 mK focal plane of a satellite cryostat. We use a new alloy technology: the high resistivity NbSi, enabling us to design TES sensors promising high spectral resolution and ultra low power consumption (below 10 pW). Their high impedance allows the use of a transistor readout at a hotter stage of the cryostat. This, in conjunction with the inherent ultra-low power dissipation of the sensors, raises drastically the number of pixels of the detector.In this article, we explore pixel optimization ways based on our electro-thermal model to reach spectral resolution of the order of 1.8 eV. We then use this model to manufacture a new batch of pixels on which we conduct experimental measurements. We measure the transient response, energy linearity and noise spectrum of our pixels with an Iron 55 source as well as an innovative on-chip pulse injection system. A low noise cryogenic amplifier as well as a cryogenic experimental setup have been designed to perform these measurements.© COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only
    corecore