24 research outputs found

    Homogeneous isotropization and equilibration of a strongly coupled plasma with a critical point

    Full text link
    We use holography to investigate the process of homogeneous isotropization and thermalization in a strongly coupled N=4\mathcal{N} = 4 Super Yang-Mills plasma charged under a U(1)U(1) subgroup of the global SU(4)SU(4) R-symmetry which features a critical point in its phase diagram. Isotropization dynamics at late times is affected by the critical point in agreement with the behavior of the characteristic relaxation time extracted from the analysis of the lowest non-hydrodynamic quasinormal mode in the SO(3)SO(3) quintuplet (external scalar) channel of the theory. In particular, the isotropization time may decrease or increase as the chemical potential increases depending on whether one is far or close enough to the critical point, respectively. On the other hand, the thermalization time associated with the equilibration of the scalar condensate, which happens only after the system has relaxed to a (nearly) isotropic state, is found to always increase with chemical potential in agreement with the characteristic relaxation time associated to the lowest non-hydrodynamic quasinormal mode in the SO(3)SO(3) singlet (dilaton) channel. These conclusions about the late dynamics of the system are robust in the sense that they hold for different initial conditions seeding the time evolution of the far-from-equilibrium plasma.Comment: 66 pages, 27 figures, calculation of the QNMs of the dilaton channel added, revised conclusions. Accepted for publication in JHEP. v4: typos corrected; v5: a few more typos correcte

    Hydrodynamization Time Near a Critical Point From a Holographic Bjorken Flow <sup>†</sup>

    No full text
    This proceedings reviews recent progress in the study of far-from-equilibrium hydrodynamization process of strongly interacting matter in the vicinity of a critical point. From a full non-linear evolution of a gravitational theory dual to a conformal strongly coupled plasma, and starting from a non-equilibrium initial state, it is verified that the time it takes for the plasma to acquire hydrodynamic behavior greatly increases near the critical point

    Plasmas não-Abelianos fortemente acoplados em um campo magnético

    No full text
    In this dissertation we use the gauge/gravity duality approach to study the dynamics of strongly coupled non-Abelian plasmas. Ultimately, we want to understand the properties of the quark-gluon plasma (QGP), whose scientifc interest by the scientific community escalated exponentially after its discovery in the 2000\'s through the collision of ultrarelativistic heavy ions. One can enrich the dynamics of the QGP by adding an external field, such as the baryon chemical potential (needed to study the QCD phase diagram), or a magnetic field. In this dissertation, we choose to investigate the magnetic effects. Indeed, there are compelling evidences that strong magnetic fields of the order eB\\sim 10 m_\\pi^2 are created in the early stages of ultrarelativistic heavy ion collisions. The chosen observable to scan possible effects of the magnetic field on the QGP was the viscosity, due to the famous result eta/s=1/4pi\\eta/s=1/4\\pi obtained via holography. In a first approach we use a caricature of the QGP, the mathcalN=4\\mathcal{N}=4 super Yang-Mills plasma to calculate the deviations of the viscosity as we add a magnetic field. We must emphasize, though, that a magnetized plasma has a priori seven viscosity coefficients (five shears and two bulks). In addition, we also study in this same model the anisotropic heavy quark-antiquark potential in the presence of a magnetic field. In the end, we propose a phenomenological holographic QCD-like model, which is built upon the lattice QCD data, to study the thermodynamics and the viscosity of the QGP with an external strong magnetic field.Nesta dissertação utilizamos uma abordagem via dualidade gauge/gravity para estudar a dinâmica de plasmas não-Abelianos fortemente interagentes. Nosso objetivo último visa aplicações para o plasma de quarks e glúons (QGP), cujo interesse científico cresceu exponencialmente depois de sua descoberta em meados dos anos 2000 ao colidir-se íons ultrarelativísticos. Podemos enriquecer a dinâmica do QGP ao adicionarmos campos externos, como o potencial químico (para exploração do diagrama de fases hadrônico), ou um campo magnético. Nesta dissertação, tomamos como norte a exploração dos efeitos magnéticos. De fato, acredita-se que campos magnéticos da ordem de eB\\sim 10 m_\\pi^2 sejam criados nos estágios iniciais do QGP. O observável escolhido para sondar possíveis efeitos do campo magnético no QGP foi a viscosidade, em partes pelo famoso resultado eta/s=1/4pi\\eta/s=1/4\\pi obtido holograficamente. Utilizamos num primeiro momento uma caricatura da QCD, a mathcalN=4\\mathcal{N}=4 super Yang-Mills para calcular o que muda na viscosidade com o advento do campo magnético. Devemos salientar, contudo, que um plasma altamente magnetizado possui a priori sete coeficientes de viscosidade (cinco de cisalhamento e duas volumétricas). Também exploramos, nesse mesmo modelo, o potencial de um par pesado de quark-antiquark na presença de um campo magnético. Por fim, propomos um modelo holográfico fenomenológico mais semelhante a QCD, sendo ele ``calibrado\'\' pelos dados da QCD na rede, para estudar a termodinâmica e a viscosidade do QGP imerso num forte campo magnético
    corecore