118 research outputs found
On the information carried by programs about the objects they compute
In computability theory and computable analysis, finite programs can compute
infinite objects. Presenting a computable object via any program for it,
provides at least as much information as presenting the object itself, written
on an infinite tape. What additional information do programs provide? We
characterize this additional information to be any upper bound on the
Kolmogorov complexity of the object. Hence we identify the exact relationship
between Markov-computability and Type-2-computability. We then use this
relationship to obtain several results characterizing the computational and
topological structure of Markov-semidecidable sets
Computability of probability measures and Martin-Lof randomness over metric spaces
In this paper we investigate algorithmic randomness on more general spaces
than the Cantor space, namely computable metric spaces. To do this, we first
develop a unified framework allowing computations with probability measures. We
show that any computable metric space with a computable probability measure is
isomorphic to the Cantor space in a computable and measure-theoretic sense. We
show that any computable metric space admits a universal uniform randomness
test (without further assumption).Comment: 29 page
Coding discretizations of continuous functions
We consider several coding discretizations of continuous functions which
reflect their variation at some given precision. We study certain statistical
and combinatorial properties of the sequence of finite words obtained by coding
a typical continuous function when the diameter of the discretization tends to
zero. Our main result is that any finite word appears on a subsequence
discretization with any desired limit frequency
Randomness on computable probability spaces - A dynamical point of view
We extend the notion of randomness (in the version introduced by Schnorr) to computable probability spaces and compare it to a dynamical notion of randomness: typicality. Roughly, a point is typical for some dynamic, if it follows the statistical behavior of the system (Birkhoff’s pointwise ergodic theorem). We prove that a point is Schnorr random if and only if it is typical for every mixing computable dynamics. To prove the result we develop some tools for the theory of computable probability spaces (for example, morphisms) that are expected to have other applications
- …