118 research outputs found

    On the information carried by programs about the objects they compute

    Get PDF
    In computability theory and computable analysis, finite programs can compute infinite objects. Presenting a computable object via any program for it, provides at least as much information as presenting the object itself, written on an infinite tape. What additional information do programs provide? We characterize this additional information to be any upper bound on the Kolmogorov complexity of the object. Hence we identify the exact relationship between Markov-computability and Type-2-computability. We then use this relationship to obtain several results characterizing the computational and topological structure of Markov-semidecidable sets

    Computability of probability measures and Martin-Lof randomness over metric spaces

    Get PDF
    In this paper we investigate algorithmic randomness on more general spaces than the Cantor space, namely computable metric spaces. To do this, we first develop a unified framework allowing computations with probability measures. We show that any computable metric space with a computable probability measure is isomorphic to the Cantor space in a computable and measure-theoretic sense. We show that any computable metric space admits a universal uniform randomness test (without further assumption).Comment: 29 page

    Coding discretizations of continuous functions

    Get PDF
    We consider several coding discretizations of continuous functions which reflect their variation at some given precision. We study certain statistical and combinatorial properties of the sequence of finite words obtained by coding a typical continuous function when the diameter of the discretization tends to zero. Our main result is that any finite word appears on a subsequence discretization with any desired limit frequency

    Randomness on computable probability spaces - A dynamical point of view

    Full text link
    We extend the notion of randomness (in the version introduced by Schnorr) to computable probability spaces and compare it to a dynamical notion of randomness: typicality. Roughly, a point is typical for some dynamic, if it follows the statistical behavior of the system (Birkhoff’s pointwise ergodic theorem). We prove that a point is Schnorr random if and only if it is typical for every mixing computable dynamics. To prove the result we develop some tools for the theory of computable probability spaces (for example, morphisms) that are expected to have other applications
    • …
    corecore