78 research outputs found

    Synchronization and Oscillatory Dynamicd in Heterogeneous, . . .

    No full text
    We study some mechanisms responsible for synchronous oscillations and loss of synchrony at physiologically relevant frequencies (10--200 Hz) in a network of heterogeneous inhibitory neurons. We focus on the factors that determine the level of synchrony and frequency of the network response, as well as the effects of mild heterogeneity on network dynamics. With mild heterogeneity, synchrony is never perfect and is relatively fragile. In addition, the effects of inhibition are more complex in mildly heterogeneous networks than in homogeneous ones. In the former, synchrony is broken in two distinct ways, depending on the ratio of the synaptic decay time to the period of repetitive action potentials (# s /T ), where T can be determined either from the network or from a single, self-inhibiting neuron. With # s /T > 2, corresponding to large applied current, small synaptic strength or large synaptic decay time, the effects of inhibition are largely tonic and heterogeneous neurons spike relatively independently. With # s /T < 1, synchrony breaks when faster cells begin to suppress their less excitable neighbors; cells that fire remain nearly synchronous. We show numerically that the behavior of mildly heterogeneous networks can be related to the behavior of single, self-inhibiting cells, which can be studied analytically

    Evolution over Time of Ventilatory Management and Outcome of Patients with Neurologic Disease∗

    No full text
    OBJECTIVES: To describe the changes in ventilator management over time in patients with neurologic disease at ICU admission and to estimate factors associated with 28-day hospital mortality. DESIGN: Secondary analysis of three prospective, observational, multicenter studies. SETTING: Cohort studies conducted in 2004, 2010, and 2016. PATIENTS: Adult patients who received mechanical ventilation for more than 12 hours. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among the 20,929 patients enrolled, we included 4,152 (20%) mechanically ventilated patients due to different neurologic diseases. Hemorrhagic stroke and brain trauma were the most common pathologies associated with the need for mechanical ventilation. Although volume-cycled ventilation remained the preferred ventilation mode, there was a significant (p < 0.001) increment in the use of pressure support ventilation. The proportion of patients receiving a protective lung ventilation strategy was increased over time: 47% in 2004, 63% in 2010, and 65% in 2016 (p < 0.001), as well as the duration of protective ventilation strategies: 406 days per 1,000 mechanical ventilation days in 2004, 523 days per 1,000 mechanical ventilation days in 2010, and 585 days per 1,000 mechanical ventilation days in 2016 (p < 0.001). There were no differences in the length of stay in the ICU, mortality in the ICU, and mortality in hospital from 2004 to 2016. Independent risk factors for 28-day mortality were age greater than 75 years, Simplified Acute Physiology Score II greater than 50, the occurrence of organ dysfunction within first 48 hours after brain injury, and specific neurologic diseases such as hemorrhagic stroke, ischemic stroke, and brain trauma. CONCLUSIONS: More lung-protective ventilatory strategies have been implemented over years in neurologic patients with no effect on pulmonary complications or on survival. We found several prognostic factors on mortality such as advanced age, the severity of the disease, organ dysfunctions, and the etiology of neurologic disease

    Jet-hadron correlations measured relative to the second order event plane in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    The Quark Gluon Plasma (QGP) produced in ultra relativistic heavy-ion collisions at the Large Hadron Collider (LHC) can be studied by measuring the modifications of jets formed by hard scattered partons which interact with the medium. We studied these modifications via angular correlations of jets with charged hadrons for jets with momenta 20 < pjetT < 40 GeV/c as a function of the associated particle momentum. The reaction plane fit (RPF) method is used in this analysis to remove the flow modulated background. The analysis of angular correlations for different orientations of the jet relative to the second order event plane allows for the study of the path length dependence of medium modifications to jets. We present the dependence of azimuthal angular correlations of charged hadrons with respect to the angle of the axis of a reconstructed jet relative to the event plane in Pb-Pb collisions at sNN−−−√ = 2.76 TeV. The dependence of particle yields associated with jets on the angle of the jet with respect to the event plane is presented. Correlations at different angles relative to the event plane are compared through ratios and differences of the yield. No dependence of the results on the angle of the jet with respect to the event plane is observed within uncertainties, which is consistent with no significant path length dependence of the medium modifications for this observable

    Multiplicity dependence of light-flavor hadron production in pp collisions at √s = 7 TeV

    No full text
    Comprehensive results on the production of unidentified charged particles, π±, K±, K0S, K*(892)0, p, p¯¯¯, ϕ(1020), Λ, Λ¯¯¯¯, Ξ−, Ξ¯¯¯¯+, Ω− and Ω¯¯¯¯+ hadrons in proton-proton (pp) collisions at s√ = 7 TeV at midrapidity (|y|<0.5) as a function of charged-particle multiplicity density are presented. In order to avoid auto-correlation biases, the actual transverse momentum (pT) spectra of the particles under study and the event activity are measured in different rapidity windows. In the highest multiplicity class, the charged-particle density reaches about 3.5 times the value measured in inelastic collisions. While the yield of protons normalized to pions remains approximately constant as a function of multiplicity, the corresponding ratios of strange hadrons to pions show a significant enhancement that increases with increasing strangeness content. Furthermore, all identified particle to pion ratios are shown to depend solely on charged-particle multiplicity density, regardless of system type and collision energy. The evolution of the spectral shapes with multiplicity and hadron mass shows patterns that are similar to those observed in p-Pb and Pb-Pb collisions at LHC energies. The obtained pT distributions and yields are compared to expectations from QCD-based pp event generators as well as to predictions from thermal and hydrodynamic models. These comparisons indicate that traces of a collective, equilibrated system are already present in high-multiplicity pp collisions

    Higher harmonic non-linear flow modes of charged hadrons in Pb–Pb collisions at √sNN =5.02 TeV

    No full text
    Anisotropic flow coefficients, vn, non-linear flow mode coefficients, χn,mk, and correlations among different symmetry planes, ρn,mk are measured in Pb-Pb collisions at sNN−−−√=5.02 TeV. Results obtained with multi-particle correlations are reported for the transverse momentum interval 0.2<pT<5.0 GeV/c within the pseudorapidity interval 0.4<|η|<0.8 as a function of collision centrality. The vn coefficients and χn,mk and ρn,mk are presented up to the ninth and seventh harmonic order, respectively. Calculations suggest that the correlations measured in different symmetry planes and the non-linear flow mode coefficients are dependent on the shear and bulk viscosity to entropy ratios of the medium created in heavy-ion collisions. The comparison between these measurements and those at lower energies and calculations from hydrodynamic models places strong constraints on the initial conditions and transport properties of the system

    Direct photon elliptic flow in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    The elliptic flow of inclusive and direct photons was measured at mid-rapidity in two centrality classes 0-20% and 20-40% in Pb-Pb collisions at sNN−−−√ =2.76 TeV by ALICE. Photons were detected with the highly segmented electromagnetic calorimeter PHOS and via conversions in the detector material with the e+e− pairs reconstructed in the central tracking system. The results of the two methods were combined and the direct photon elliptic flow was extracted in the transverse momentum range 0.9<pT<6.2 GeV/c. We test the hypothesis vγ,dir2≡0 for 0.9<pT<2.1 GeV/c and obtain a significance of 1.4σ for the 0-20% class and 1.0σ for the 20-40% class. A comparison to RHIC data shows a similar magnitude of the measured elliptic flow, while hydrodynamic and transport model calculations predict a smaller flow than observed
    corecore