2,340 research outputs found

    The role of extracellular polymeric substances in micropollutant removal

    Get PDF
    In biological wastewater treatment (WWT), microorganisms live and grow held together by a slime matrix comprised of extracellular polymeric substances (EPS), forming a three-dimensional microbial structure of aggregates (flocs or granules) and by chemical binding forces. Furthermore, microscopic observations showed that microbial cells within the flocs were cross linked with EPS, forming a network of polymers with pores and channels. The EPS are typically composed of organic substances such as polysaccharides (PS), proteins (PNs), humic acid substances (HAS), nucleic acids, and lipids. It has been established that EPS play an essential role in aggregate flocculation, settling, and dewatering. Moreover, in the presence of toxic substances, such as pharmaceutical compounds and pesticides, EPS form a protective layer for the aggregated biomass against environmental disturbances that might play an important role in the transport and transformation of micropollutants. Some researchers indicated that there is an increase in EPS concentration under toxic conditions, which can induce an increase in the size of microbial aggregates. In this contribution, we critically review the available information on the impact of micropollutants on microbial EPS production and the relationship between EPS and microbial aggregate structure. Also, a general definition, composition, and factors that affect EPS production are presented.The authors thank the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit. The authors also acknowledge the financial support to AM through the Grant Number 240–20170220 provided by Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco (IFPE). DM and CQ thank FCT for funding through program DL 57/2016— Norma transitória.info:eu-repo/semantics/publishedVersio

    EPS and aggregates changes on activated sludge under atrazine exposure

    Get PDF
    Extracellular polymeric substances (EPS) play a vital role in biological wastewater treatment systems, affecting their performance in aggregates settling, structure and arrangement, and interacting with micropollutants present in wastewater. In this study, the effects of herbicide atrazine (ATZ) on the EPS yield and composition and aggregates structure were investigated on activated sludge (AS) in a sequencing batch reactor (SBR). The results demonstrated that TB-EPS and LB-EPS increased under ATZ exposure, indicating that microorganisms release EPS as a self-mechanism of defense against environmental changes. Above 5.5 mg L-1 of ATZ aggregates become larger. Principal component analysis (PCA) was useful in highlighting biomass changes during the experimental phases, and Pearson correlation revealed that TB-EPS content correlate well with large aggregates (0.996).The authors thank the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit, and by LABBELS – Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems, LA/P/0029/2020. The authors also acknowledge the financial support to A. Melo through the grant 240-20170220 provided by Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco (IFPE). D.P. Mesquita and C. Quintelas acknowledge FCT funding under DL57/2016 Transitory Norm Programme.info:eu-repo/semantics/publishedVersio

    Environmentally-friendly technology for rapid identification and quantification of emerging pollutants from wastewater using infrared spectroscopy

    Get PDF
    Supplementary material related to this article can be found, in theonline version, at doi:https://doi.org/10.1016/j.etap.2020.103458.The monitoring of emerging pollutants in wastewaters is nowadays an issue of special concern, with the classical quantification methods being time and reagent consuming. In this sense, a FTIR transmission spectroscopy based chemometric methodology was developed for the determination of eight of these pollutants. A total of 456 samples were, therefore, obtained, from an activated sludge wastewater treatment process spiked with the studied pollutants, and analysed in the range of 200cm1 to 14,000cm1. Then, a k-nearest neighbour (kNN) analysis aiming at identifying each sample pollutant was employed. Next, partial least squares (PLS) and ordinary least squares (OLS) modelling approaches were employed in order to obtain suitable prediction models. This procedure resulted in good prediction abilities regarding the estimation of atrazine, desloratadine, paracetamol, -estradiol, ibuprofen, carbamazepine, sulfamethoxazole and ethynylestradiol concentrations in wastewaters. These promising results suggest this technology as a fast, eco-friendly and reagent free alternative methodology for the quantification of emerging pollutants in wastewaters.The authors thank the Portuguese Foundation for Science andTechnology (FCT) under the scope of the strategic funding of UIDB/BIO/04469/2020 unit and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fundunder the scope of Norte2020 - Programa Operacional Regional doNorte.info:eu-repo/semantics/publishedVersio

    Inoculation with the endophytic bacterium Herbaspirillum seropedicae promotes growth, nutrient uptake and photosynthetic efficiency in rice

    Get PDF
    Main conclusion: Higher vacuolar proton pump activity may increase plant energy and nutrient use efficiency and provide the nexus between plant inoculation with Herbaspirillum seropedicae and growth promotion. Abstract: Global change and growing human population are exhausting arable land and resources, including water and fertilizers. We present inoculation with the endophytic plant-growth promoting bacterium (PGPB) Herbaspirillum seropedicae as a strategy for promoting growth, nutrient uptake and photosynthetic efficiency in rice (Oryza sativa L.). Because plant nutrient acquisition is coordinated with photosynthesis and the plant carbon status, we hypothesize that inoculation with H. seropedicae will stimulate proton (H+) pumps, increasing plant growth nutrient uptake and photosynthetic efficiency at low nutrient levels. Plants were inoculated and grown in pots with sterile soil for 90 days. Herbaspirillum seropedicae endophytic colonization was successful and, as hypothesized, inoculation (1) stimulated root vacuolar H+ pumps (vacuolar H+-ATPase and vacuolar H+-PPase), and (2) increased plant growth, nutrient contents and photosynthetic efficiency. The results showed that inoculation with the endophytic bacterium H. seropedicae can promote plant growth, nutrient uptake and photosynthetic efficiency, which will likely result in a more efficient use of resources (nutrients and water) and higher production of nutrient-rich food at reduced economic and environmental costs.info:eu-repo/semantics/publishedVersio

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum

    The Lipid Mediator Resolvin D1 Reduces the Skin Inflammation and Oxidative Stress Induced by UV Irradiation in Hairless Mice

    Get PDF
    UV irradiation-induced oxidative stress and inflammation contribute to the development of skin diseases. Therefore, targeting oxidative stress and inflammation might contribute to reduce skin diseases. Resolvin D1 (RvD1) is a bioactive metabolite generated during inflammation to actively orchestrate the resolution of inflammation. However, the therapeutic potential of RvD1 in UVB skin inflammation remains undetermined, which was, therefore, the aim of the present study. The intraperitoneal treatment with RvD1 (3-100 ng/mouse) reduced UVB irradiation-induced skin edema, myeloperoxidase activity, matrix metalloproteinase 9 activity, and reduced glutathione depletion with consistent effects observed with the dose of 30 ng/mouse, which was selected to the following experiments. RvD1 inhibited UVB reduction of catalase activity, and hydroperoxide formation, superoxide anion production, and gp91phox mRNA expression. RvD1 also increased the Nrf2 and its downstream targets NQO1 and HO-1 mRNA expression. Regarding cytokines, RvD1 inhibited UVB-induced production of IL-1β, IL-6, IL-33, TNF-α, TGF-β, and IL-10. These immuno-biochemical alterations by RvD1 treatment had as consequence the reduction of UVB-induced epidermal thickness, sunburn and mast cell counts, and collagen degradation. Therefore, RvD1 inhibited UVB-induced skin oxidative stress and inflammation, rendering this resolving lipid mediator as a promising therapeutic agent
    corecore