55 research outputs found
When, where and how? Focus on neuronal calcium dysfunctions in Alzheimer's Disease.
Alzheimer\u2019s disease (AD), since its characterization as a precise form of dementia with its own pathological
hallmarks, has captured scientists\u2019 attention because of its complexity. The last 30 years have been
filled with discoveries regarding the elusive aetiology of this disease and, thanks to advances in molecular
biology and live imaging techniques, we now know that an important role is played by calcium (Ca2+).
Ca2+, as ubiquitous second messenger, regulates a vast variety of cellular processes, from neuronal excitation
and communication, to muscle fibre contraction and hormone secretion, with its action spanning
a temporal scale that goes from microseconds to hours. It is therefore very challenging to conceive a
single hypothesis that can integrate the numerous findings on this issue with those coming from the
classical fields of AD research such as amyloid-beta (A) and tau pathology. In this contribution, we will
focus our attention on the Ca2+ hypothesis of AD, dissecting it, as much as possible, in its subcellular
localization, where the Ca2+ signal meets its specificity. We will also follow the temporal evolution of the
Ca2+ hypothesis, providing some of the most updated discoveries. Whenever possible, we will link the
findings regarding Ca2+ dysfunction to the other players involved in AD pathogenesis, hoping to provide
a crossover body of evidence, useful to amplify the knowledge that will lead towards the discovery of an
effective therapy
Effect of membrane potential on divalent cation transport catalyzed by the "electroneutral" ionophores A23187 and ionomycin.
Depolarization of plasma membrane potential has a potent inhibitory effect on divalent cation influx catalyzed by the carboxylic ionophores ionomycin and A23187. This effect is observed in different cell models and does not depend on either inhibition of Ca2+-activated cation channels or activation of Ca2+ extrusion mechanisms as suggested previously. A dependence of divalent cation influx on the magnitude of membrane potential is observed also in artificial liposomes. The inhibition of ionophore-dependent divalent cation transport by membrane potential depolarization can be modified varying the ionophore concentration and the external pH. These findings suggest that both neutral and positively charged ionophore-cation complexes can cross the plasma membrane and that their contribution to the overall transport process can be varied according to the experimental conditions
Intracellular ADP modulates the Ca2+ release-activated Ca2+ current in a temperature- and Ca2+-dependent Way.
Abstract The rat basophilic cell line RBL-1 is known to express high levels of the Ca current activated by store depletion, known as Ca release-activated Ca current (I), the main Ca influx pathway so far identified in nonexcitable cells. We show here that, as reported in other cell types, metabolic drugs strongly inhibit the Ca influx operated by store depletion in RBL-1 cells also. We have tested the hypothesis that intracellular adenine and/or guanine nucleotide levels act as coupling factors between I and cell metabolism. Using the whole cell configuration of the patch-clamp technique, we demonstrate that addition of ADP to the intracellular solution significantly reduces I induced by inositol 1,4,5-trisphosphate. This phenomenon differs from other regulatory pathways of I, since it is highly temperature-dependent, is observable only in the presence of low intracellular Ca buffering capacity, and requires a cytosolic factor(s) which is rapidly lost during cell dialysis. Moreover, the inhibition is specific for ADP and is partially mimicked by ADPβS and AMP, but not by GDP or GTP
Generation of inositol phosphates, cytosolic Ca2+, and ionic fluxes in PC12 cells treated with bradykinin
Abstract Accumulation of inositol phosphates (Ins-Ps, revealed by high performance liquid chromatography), changes of the cytosolic free Ca2+ [( Ca2+]i, revealed by fura-2), membrane potential and ionic currents (revealed by bis-oxonol and patch clamping) were investigated in PC12 cells treated with bradykinin (BK). The phenomena observed were (a) due to the activation of a B2 receptor (inhibitor studies) and (b) unaffected by pertussis toxin, cAMP analogs, and inhibitors of either cyclooxygenase or voltage-gated Ca2+ channels. During the initial tens of s, three interconnected events predominated: accumulation of Ins-1,4,5-P3, Ca2+ release from intracellular stores and hyperpolarization due to the opening of Ca2+-activated K+ channels. Phorbol myristate acetate partially inhibited Ins-1,4,5-P3 accumulation at all [BK] investigated, and the [Ca2+]i increase at [BK] less than 50 nM. In PC12 cells treated with maximal [BK] in the Ca2+-containing incubation medium, Ins-1,4,5-P3 peaked at 10 s, dropped to 20% of the peak at 30 s, and returned to basal within 5 min; the peak increase of Ins-1,3,4-P3 was slower and was variable from experiment to experiment, while Ins-P4 rose for 2 min, and remained elevated for many min thereafter. Meanwhile, influx of Ca2+ from the extracellular medium, plasma membrane depolarization (visible without delay when hyperpolarization was blocked), and increased plasma membrane conductance were noticed. Evidence is presented that these last three events (which were partially inhibited by phorbol myristate acetate at all [BK]) were due to the activation of a cation influx, which was much more persistent than the elevation of the two Ins-P3 isomers. Our results appear inconsistent with the possibility that in intact PC12 cells the BK-induced activation of cation influx is accounted for entirely by the increases of either Ins-1,3,4-P3 or Ins-1,4,5-P3 (alone or in combination with Ins-1,3,4,5-P4), as previously suggested by microinjection studies in different cell types
Receptor-activated Ca2+ influx. Two independently regulated mechanisms of influx stimulation coexist in neurosecretory PC12 cells.
Receptor-activated Ca2+ influx was investigated in PC12 cells clones loaded with fura-2. Cells were stimulated in a Ca(2+)-free medium and studied after reintroduction of the cation or addition of Mn2+ into the medium. A first influx component, independent of receptor activation and sustained by depletion of the intracellular inositol 1,4,5-trisphosphate sensitive Ca2+ store (store-dependent Ca2+ influx, SDCI), was identified by experiments with carbachol followed by atropine and with agents that induce store discharge without polyphosphoinositide hydrolysis: thapsigargin, an inhibitor of Ca(2+)-ATPase activity; ryanodine and caffeine, activators of the ryanodine receptor. A second component of Ca2+ influx, induced by carbachol and rapidly blocked by atropine, relies on receptor-effector coupling via G protein(s) different from that (those) involved in phospholipase C activation. SDCI and receptor-coupled influx are similar in their voltage dependence and insensitivity to forskolin and phorbol esters but they differ with respect to their Mn2+ permeability and their sensitivity to the SC 38249 imidazole blocker. The two components might play different roles. SDCI might act as a safety device to prevent Ca2+ store depletion whereas receptor-dependent influx might control physiological functions such as secretion and growth
Intracellular Ca2+ pools in PC12 cells. Three intracellular pools are distinguished by their turnover and mechanisms of Ca2+ accumulation, storage, and release.
Three, non-cytosolic Ca2+ pools were characterized in intact PC12 cells. The first pool, sensitive to both inositol 1,4,5-trisphosphate and caffeine (Zacchetti, D., Clementi, E., Fasolato, C., Zottini, M., Grohovaz, F., Fumagalli, G., Pozzan, T., and Meldolesi, J. (1991) J. Biol. Chem. 266, 20152-20158) accounts for approximately equal to 200 microM of Ca2+/liter of cell water (less than 30% of total exchangeable Ca2+) and takes up Ca2+ from the cytosol via a Ca(2+)-ATPase, blocked by thapsigargin. A second pool, approximately equal to 400 microM/liter, is insensitive to both inositol 1,4,5-trisphosphate, caffeine, and thapsigargin and is released by the Ca2+ ionophore ionomycin. This pool is probably heterogeneous and its intracellular localization and physiological roles remain undefined. The third pool, approximately equal to 170 mumoles of Ca2+/liter, was discharged by the combination of ionomycin together with a substance that collapsed intracellular pH gradients, such as monensin or NH4Cl. This indicates that the pool is acidic, at variance with the first two. When exocytosis was stimulated, the size of this pool declined, indicating its primary residence within secretory granules. In the conditions of our experiments no major transfer of Ca2+ among the pools seemed to occur. This is the first comprehensive description of non-cytosolic Ca2+ pools investigated in intact neurosecretory cells by non-invasive procedures
Serum Albumin Is Inversely Associated With Portal Vein Thrombosis in Cirrhosis
We analyzed whether serum albumin is independently associated with portal vein thrombosis (PVT) in liver cirrhosis (LC) and if a biologic plausibility exists. This study was divided into three parts. In part 1 (retrospective analysis), 753 consecutive patients with LC with ultrasound-detected PVT were retrospectively analyzed. In part 2, 112 patients with LC and 56 matched controls were entered in the cross-sectional study. In part 3, 5 patients with cirrhosis were entered in the in vivo study and 4 healthy subjects (HSs) were entered in the in vitro study to explore if albumin may affect platelet activation by modulating oxidative stress. In the 753 patients with LC, the prevalence of PVT was 16.7%; logistic analysis showed that only age (odds ratio [OR], 1.024; P = 0.012) and serum albumin (OR, -0.422; P = 0.0001) significantly predicted patients with PVT. Analyzing the 112 patients with LC and controls, soluble clusters of differentiation (CD)40-ligand (P = 0.0238), soluble Nox2-derived peptide (sNox2-dp; P < 0.0001), and urinary excretion of isoprostanes (P = 0.0078) were higher in patients with LC. In LC, albumin was correlated with sCD4OL (Spearman's rank correlation coefficient [r(s)], -0.33; P < 0.001), sNox2-dp (r(s), -0.57; P < 0.0001), and urinary excretion of isoprostanes (r(s), -0.48; P < 0.0001) levels. The in vivo study showed a progressive decrease in platelet aggregation, sNox2-dp, and urinary 8-iso prostaglandin F2 alpha-III formation 2 hours and 3 days after albumin infusion. Finally, platelet aggregation, sNox2-dp, and isoprostane formation significantly decreased in platelets from HSs incubated with scalar concentrations of albumin. Conclusion: Low serum albumin in LC is associated with PVT, suggesting that albumin could be a modulator of the hemostatic system through interference with mechanisms regulating platelet activation
Delayed Activation of the Store-operated Calcium Current Induced by Calreticulin Overexpression in RBL-1 Cells
Calreticulin (CRT) is a high-capacity, low-affinity Ca(2+)-binding protein located in the lumen of the endoplasmic reticulum (ER) of all eukaryotic cells investigated so far. Its high level of conservation among different species suggests that it serves functions fundamental to cell survival. The role originally proposed for CRT, i.e., the main Ca(2+) buffer of the ER, has been obscured or even casted by its implication in processes as diverse as gene expression, protein folding, and cell adhesion. In this work we seek the role of CRT in Ca(2+) storing and signaling by evaluating its effects on the kinetics and amplitude of the store-operated Ca(2+) current (I(CRAC)). We show that, in the rat basophilic leukemia cell line RBL-1, overexpression of CRT, but not of its mutant lacking the high-capacity Ca(2+)-binding domain, markedly retards the I(CRAC) development, however, only when store depletion is slower than the rate of current activation. On the contrary, when store depletion is rapid and complete, overexpression of CRT has no effect. The present results are compatible with a major Ca(2+)-buffering role of CRT within the ER but exclude a direct, or indirect, role of this protein on the mechanism of I(CRAC) activation
Receptor-mediated calcium influx in PC12 cells : ATP and bradykinin activate two indipendent pathways
In the neurosecretory cell line PC12 the cytosolic free Ca2+ concentration, [Ca2+]i, and membrane potential were affected by both external ATP and the nonapeptide bradykinin, BK. The latter caused a rapid and large release of Ca2+ from intracellular stores (Ca2+ redistribution) and, in the presence of external Ca2+, a long lasting, but moderate Ca2+ influx, which was insensitive to dihydropyridine blockers. On the contrary, ATP evoked a [Ca2+]i rise which rapidly inactivated. At least three different mechanisms accounted for the ATP-induced increase in [Ca2+]i: less than 20% of the total response was due to intracellular Ca2+ redistribution, consistent with a small increase in inositol 1,4,5-trisphosphate level; the rest (over 80%) was equally accounted for by ATP-activated cation channels and voltage-gated Ca2+ channels. ATP and BK (the latter after K+ channel blockade) caused plasma membrane depolarization. With both agonists the inward current was carried by both Na+ and Ca2+, although the BK-activated current appeared to be more selective for Ca2+. Channels triggered by ATP and BK differed not only in their cation selectivity, but also in modulation by both [Ca2+]i and drugs such as the phorbol ester phorbol 12-myristate 13-acetate and the new antagonist of ligand-activated Ca2+ influx, SK&F 96365
- …