2 research outputs found

    Probing the Site-Dependent Kondo Response of Nanostructured Graphene with Organic Molecules

    No full text
    TCNQ molecules are used as a sensitive probe for the Kondo response of the electron gas of a nanostructured graphene grown on Ru(0001) presenting a moiré pattern. All adsorbed molecules acquired an extra electron by charge transfer from the substrate, but only those adsorbed in the FCC-Top areas of the moiré show magnetic moment and Kondo resonance in the STS spectra. DFT calculations trace back this behavior to the existence of a surface resonance in the low areas of the graphene moiré, whose density distribution strongly depends on the stacking sequence of the moiré area and effectively quenches the magnetic moment for HCP-Top sites

    Elastic Response of Graphene Nanodomes

    No full text
    The mechanical behavior of a periodically buckled graphene membrane has been investigated by noncontact atomic force microscopy in ultrahigh vacuum. When a graphene monolayer is grown on Ru(0001), a regular arrangement of 0.075 nm high nanodomes forming a honeycomb lattice with 3 nm periodicity forms spontaneously. This structure responds in a perfectly reversible way to relative normal displacements up to 0.12 nm. Indeed, the elasticity of the nanodomes is proven by realistic DFT calculations, with an estimated normal stiffness <i>k</i> ∼ 40 N/m. Our observations extend previous results on macroscopic graphene samples and confirm that the elastic behavior of this material is maintained down to nanometer length scales, which is important for the development of new high-frequency (terahertz) electromechanical devices
    corecore