32 research outputs found

    Testosterone insulin-like effects: an in vitro study on the short-term metabolic effects of testosterone in human skeletal muscle cells

    Get PDF
    Testosterone by promoting different metabolic pathways contributes to short-term homeostasis of skeletal muscle, the largest insulin-sensitive tissue and the primary site for insulin-stimulated glucose utilization. Despite evidences indicate a close relationship between testosterone and glucose metabolism, the molecular mechanisms responsible for a possible testosterone-mediated insulin-like effects on skeletal muscle are still unknown

    Histone H2Ax is required for proper chromosome synapses and double strand breaks repair of mouse spermatocytes

    Get PDF
    In male mouse, chromosome dynamics and recombination are tightly regulated by a pachynema checkpoint that arrest meiotic progression of recombination defective spermatocytes, which are than eliminated by stage IV of the epithelial cell cycle. In addition, male mouse meiocytes cell death is also activated by the failure of meiotic sex chromosome inactivation (MSCI). In the latter case, the apoptotic arrest is driven by the lack of silencing of XY-linked genes. In most of meiotic recombination mutants studied, so far, have been shown that in presence of a grossly aberrant synapses, also XY gene silencing fail. Thus both a defective chromosome dynamic and impaired MSCI contributes to spermatocytes elimination. Among several mutants H2Ax-/- spermatocytes are considered to be a model for apoptotic elimination exclusively driven by MSCI failure; such that no defects have been reported in chromosome dynamic and recombination. In this study we demonstrate that a fraction (~ 30%) of H2Ax-/- spermatocytes are defective in proper chromosome pairing, indicating that MSCI failure is not the only cause for their elimination by stage IV. In agreement with this finding, we find that the absence of H2Ax impair the proper localization, onto chromatin, of DNA repair factors, such as MDC1, BRCA1, MSH4 and MLH3. Interestingly, the defects in chromosome synapses and MLH3 foci assembly are ameliorated by Spo11 heterozygosis. Overall these results demonstrate that, in meiotic cells, H2Ax is require for the efficient processing of Spo11-induced double strand breaks

    A machine-learning based bio-psycho-social model for the prediction of non-obstructive and obstructive coronary artery disease

    Get PDF
    Background: Mechanisms of myocardial ischemia in obstructive and non-obstructive coronary artery disease (CAD), and the interplay between clinical, functional, biological and psycho-social features, are still far to be fully elucidated. Objectives: To develop a machine-learning (ML) model for the supervised prediction of obstructive versus non-obstructive CAD. Methods: From the EVA study, we analysed adults hospitalized for IHD undergoing conventional coronary angiography (CCA). Non-obstructive CAD was defined by a stenosis < 50% in one or more vessels. Baseline clinical and psycho-socio-cultural characteristics were used for computing a Rockwood and Mitnitski frailty index, and a gender score according to GENESIS-PRAXY methodology. Serum concentration of inflammatory cytokines was measured with a multiplex flow cytometry assay. Through an XGBoost classifier combined with an explainable artificial intelligence tool (SHAP), we identified the most influential features in discriminating obstructive versus non-obstructive CAD. Results: Among the overall EVA cohort (n = 509), 311 individuals (mean age 67 ± 11 years, 38% females; 67% obstructive CAD) with complete data were analysed. The ML-based model (83% accuracy and 87% precision) showed that while obstructive CAD was associated with higher frailty index, older age and a cytokine signature characterized by IL-1β, IL-12p70 and IL-33, non-obstructive CAD was associated with a higher gender score (i.e., social characteristics traditionally ascribed to women) and with a cytokine signature characterized by IL-18, IL-8, IL-23. Conclusions: Integrating clinical, biological, and psycho-social features, we have optimized a sex- and gender-unbiased model that discriminates obstructive and non-obstructive CAD. Further mechanistic studies will shed light on the biological plausibility of these associations. Clinical trial registration: NCT02737982

    The Sex-Specific Detrimental Effect of Diabetes and Gender-Related Factors on Pre-admission Medication Adherence Among Patients Hospitalized for Ischemic Heart Disease: Insights From EVA Study

    Get PDF
    Background: Sex and gender-related factors have been under-investigated as relevant determinants of health outcomes across non-communicable chronic diseases. Poor medication adherence results in adverse clinical outcomes and sex differences have been reported among patients at high cardiovascular risk, such as diabetics. The effect of diabetes and gender-related factors on medication adherence among women and men at high risk for ischemic heart disease (IHD) has not yet been fully investigated.Aim: To explore the role of sex, gender-related factors, and diabetes in pre-admission medication adherence among patients hospitalized for IHD.Materials and Methods: Data were obtained from the Endocrine Vascular disease Approach (EVA) (ClinicalTrials.gov Identifier: NCT02737982), a prospective cohort of patients admitted for IHD. We selected patients with baseline information regarding the presence of diabetes, cardiovascular risk factors, and gender-related variables (i.e., gender identity, gender role, gender relations, institutionalized gender). Our primary outcome was the proportion of pre-admission medication adherence defined through a self-reported questionnaire. We performed a sex-stratified analysis of clinical and gender-related factors associated with pre-admission medication adherence.Results: Two-hundred eighty patients admitted for IHD (35% women, mean age 70), were included. Around one-fourth of the patients were low-adherent to therapy before hospitalization, regardless of sex. Low-adherent patients were more likely diabetic (40%) and employed (40%). Sex-stratified analysis showed that low-adherent men were more likely to be employed (58 vs. 33%) and not primary earners (73 vs. 54%), with more masculine traits of personality, as compared with medium-high adherent men. Interestingly, women reporting medication low-adherence were similar for clinical and gender-related factors to those with medium-high adherence, except for diabetes (42 vs. 20%, p = 0.004). In a multivariate adjusted model only employed status was associated with poor medication adherence (OR 0.55, 95%CI 0.31–0.97). However, in the sex-stratified analysis, diabetes was independently associated with medication adherence only in women (OR 0.36; 95%CI 0.13–0.96), whereas a higher masculine BSRI was the only factor associated with medication adherence in men (OR 0.59, 95%CI 0.35–0.99).Conclusion: Pre-admission medication adherence is common in patients hospitalized for IHD, regardless of sex. However, patient-related factors such as diabetes, employment, and personality traits are associated with adherence in a sex-specific manner

    Advantages of Phosphodiesterase Type 5 Inhibitors in the Management of Glucose Metabolism Disorders: A Clinical and Translational Issue

    No full text
    Among metabolic diseases, carbohydrate metabolism disorders are the most widespread. The most common glucose pathological conditions are acquired and may increase the risk of type 2 diabetes, obesity, heart diseases, stroke, and kidney insufficiency. Phosphodiesterase type 5 inhibitors (PDE5i) have long been used as an effective therapeutic option for the treatment of erectile dysfunction (ED). Different studies have demonstrated that PDE5i, by sensitizing insulin target tissues to insulin, play an important role in controlling the action of insulin and glucose metabolism, highlighting the protective action of these drugs against metabolic diseases. In this review, we report the latest knowledge about the role of PDE5i in the metabolic diseases of insulin resistance and type 2 diabetes, highlighting clinical aspects and potential treatment approaches. Although various encouraging data are available, further in vivo and in vitro studies are required to elucidate the mechanism of action and their clinical application in humans

    Tadalafil and Steroid Hormones Interactions in Adipose, Bone and Prostate Tissues: Focus on Translational Perspectives

    No full text
    Tadalafil is a selective phosphodiesterase type-5 (PDE5) inhibitor that is approved for the treatment of men with erectile dysfunction (ED) and/or benign prostate hyperplasia (BPH) -associated symptoms. Besides its classical actions on PDE5 within the genitourinary tract, where the specific enzyme expression is maximal, it may exert different systemic effects. This is mainly due to the pleiotropic distribution of PDE5 enzyme throughout the human (and animal) body, where it can exert protective effects in different clinical conditions. Recently, it has been demonstrated that tadalafil may display novel actions on androgen receptor (AR) expression and activity and cytochrome P19a1 (Cyp19a1) and estrogen receptor β (ERβ) expression in different in vitro systems, such as adipose, bone and prostate cancer cells, where it can act as a selective modulator of steroid hormone production. This may determine novel potential mechanism(s) of control in pathophysiologic pathways. In this review, we summarize basic research and translational results applicable to the use of tadalafil in the treatment of obesity, bone loss and prostate cancer

    Effect of Tadalafil Administration on Redox Homeostasis and Polyamine Levels in Healthy Men with High Level of Physical Activity

    No full text
    Background: The phosphodiesterase type 5 inhibitor (PDE5I) tadalafil, in addition to its therapeutic role, has shown antioxidant effects in different in vivo models. Supplementation with antioxidants has received interest as a suitable tool for preventing or reducing exercise‐related oxidative stress, possibly leading to the improvement of sport performance in athletes. However, the use/abuse of these substances must be evaluated not only within the context of amateur sport, but especially in competitions where elite athletes are more exposed to stressful physical practice. To date, very few human studies have addressed the influence of the administration of PDE5Is on redox balance in subjects with a fitness level comparable to elite athletes; therefore, the aim of this study was to investigate for the first time whether acute ingestion of tadalafil could affect plasma markers related to cellular damage, redox homeostasis, and blood polyamines levels in healthy subjects with an elevated cardiorespiratory fitness level. Methods: Healthy male volunteers (n = 12), with a VO2max range of 40.1–56.0 mL/(kg × min), were administered with a single dose of tadalafil(20 mg). Plasma molecules related to muscle damage and redox‐homeostasis, such as creatine kinase (CK), lactate dehydrogenase (LDH), total antioxidant capacity (TAC), reduced/oxidized glutathione ratio (GSH/GSSG), free thiols (FTH), antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)), as well as thiobarbituric acid reactive substances (TBARs), protein carbonyls (PrCAR), and polyamine levels (spermine (Spm) and spermidine (Spd) were evaluated immediately before and 2, 6 and 24 hours after the acute tadalafil administration. Results: A single tadalafil administration induced an increase in CK and LDH plasma levels 24 after consumption. No effects were observed on redox homeostasis or antioxidant enzyme activities, and neither were they observed on the oxidation target molecules or polyamines levels. Conclusion: Our results show that in subjects with an elevated fitness level, a single administration of tadalafil induced a significant increase in muscle damage target without affecting plasma antioxidant status

    The Prostacyclin Analogue Iloprost Modulates CXCL10 in Systemic Sclerosis

    Get PDF
    The prostacyclin analogue iloprost is used to treat vascular alterations and digital ulcers, the early derangements manifesting in systemic sclerosis (SSc), an autoimmune disease leading to skin and organ fibrosis. Bioindicator(s) of SSc onset and progress are still lacking and the therapeutic approach remains a challenge. The T helper 1 (Th1) chemokine interferon (IFN)γ-induced protein 10 (IP-10/CXCL10) associates with disease progression and worse prognosis. Endothelial cells and fibroblasts, under Th1-dominance, release CXCL10, further enhancing SSc’s detrimental status. We analyzed the effect of iloprost on CXCL10 in endothelial cells, dermal fibroblasts, and in the serum of SSc patients. Human endothelial cells and dermal fibroblasts activated with IFNγ/Tumor Necrosis Factor (TNF)α, with/without iloprost, were investigated for CXCL10 secretion/expression and for intracellular signaling cascade underlying chemokine release (Signal Transducer and Activator of Transcription 1, STAT1; Nuclear Factor kappa-light-chain-enhancer of activated B cells, NF-kB; c-Jun NH2-terminal kinase, JNK: Phosphatidyl-Inositol 3-kinase (PI3K)/protein kinase B, AKT; Extracellular signal-Regulated Kinase 1/2, ERK1/2). CXCL10 was quantified in sera from 25 patients taking iloprost, satisfying the American College of Rheumatology (ACR)/European Alliance of Associations for Rheumatology (EULAR) 2013 classification criteria for SSc, and in sera from 20 SSc sex/age-matched subjects without therapy, previously collected. In human endothelial cells and fibroblasts, iloprost targeted CXCL10, almost preventing IFNγ/TNFα-dependent cascade activation in endothelial cells. In SSc subjects taking iloprost, serum CXCL10 was lower. These in vitro and in vivo data suggest a potential role of iloprost to limit CXCL10 at local vascular/dermal and systemic levels in SSc and warrant further translational research aimed to ameliorate SSc understanding/management

    Hydrogen Peroxide Stimulates Dihydrotestosterone Release in C2C12 Myotubes: A New Perspective for Exercise-Related Muscle Steroidogenesis?

    No full text
    Skeletal muscle is a tissue that has recently been recognized for its ability to produce androgens under physiological conditions. The steroidogenesis process is known to be negatively influenced by reactive oxygen species (ROS) in reproductive Leydig and ovary cells, while their effect on muscle steroidogenesis is still an unexplored field. Muscle cells are continuously exposed to ROS, resulting from both their metabolic activity and the surrounding environment. Interestingly, the regulation of signaling pathways, induced by mild ROS levels, plays an important role in muscle fiber adaptation to exercise, in a process that also elicits a significant modulation in the hormonal response. The aim of the present study was to investigate whether ROS could influence steroidogenesis in skeletal muscle cells by evaluating the release of testosterone (T) and dihydrotestosterone (DHT), as well as the evaluation of the relative expression of the key steroidogenic enzymes 5α-reductase, 3β-hydroxysteroid dehydrogenase (HSD), 17β-HSD, and aromatase. C2C12 mouse myotubes were exposed to a non-cytotoxic concentration of hydrogen peroxide (H2O2), a condition intended to reproduce, in vitro, one of the main stimuli linked to the process of homeostasis and adaptation induced by exercise in skeletal muscle. Moreover, the influence of tadalafil (TAD), a phosphodiesterase 5 inhibitor (PDE5i) originally used to treat erectile dysfunction but often misused among athletes as a “performance-enhancing” drug, was evaluated in a single treatment or in combination with H2O2. Our data showed that a mild hydrogen peroxide exposure induced the release of DHT, but not T, and modulated the expression of the enzymes involved in steroidogenesis, while TAD treatment significantly reduced the H2O2-induced DHT release. This study adds a new piece of information about the adaptive skeletal muscle cell response to an oxidative environment, revealing that hydrogen peroxide plays an important role in activating muscle steroidogenesis

    Muscle Damage in Systemic Sclerosis and CXCL10: The Potential Therapeutic Role of PDE5 Inhibition

    Get PDF
    Skeletal muscle damage is a common clinical manifestation of systemic sclerosis (SSc). C-X-C chemokine ligand 10 (CXCL10) is involved in myopathy and cardiomyopathy development and is associated with a more severe SSc prognosis. Interestingly, the phosphodiesterase type 5 inhibitor (PDE5i) sildenafil reduces CXCL10 sera levels of patients with diabetic cardiomyopathy and in cardiomyocytes. Here, we analyzed the levels of CXCL10 in the sera of 116 SSc vs. 35 healthy subjects and explored differences in 17 SSc patients on stable treatment with sildenafil. CXCL10 sera levels were three-fold higher in SSc vs. healthy controls, independent of subset and antibody positivity. Sildenafil treatment was associated with lower CXCL10 sera levels. Serum CXCL10 strongly correlated with the clinical severity of muscle involvement and with creatine kinase (CK) serum concentration, suggesting a potential involvement in muscle damage in SSc. In vitro, sildenafil dose-dependently reduced CXCL10 release by activated myocytes and impaired cytokine-induced Signal transducer and activator of transcription 1 (STAT1), Nuclear factor-ÎşB (NFÎşB) and c-Jun N-terminal kinase (JNK) phosphorylation. This was also seen in cardiomyocytes. Sildenafil-induced CXCL10 inhibition at the systemic and human muscle cell level supports the hypothesis that PDE5i could be a potential therapeutic therapy to prevent and treat muscle damage in SSc
    corecore