53 research outputs found

    Antimicrobial Resistance in Neisseria gonorrhoeae: Proceedings of the STAR Sexually Transmitted Infection-Clinical Trial Group Programmatic Meeting

    Get PDF
    The goal of the Sexually Transmitted Infection Clinical Trial Group\u27s Antimicrobial Resistance (AMR) in Neisseria gonorrhoeae (NG) meeting was to assemble experts from academia, government, nonprofit and industry to discuss the current state of research, gaps and challenges in research and technology and priorities and new directions to address the continued emergence of multidrug-resistant NG infections. Topics discussed at the meeting, which will be the focus of this article, include AMR NG global surveillance initiatives, the use of whole genome sequencing and bioinformatics to understand mutations associated with AMR, mechanisms of AMR, and novel antibiotics, vaccines and other methods to treat AMR NG. Key points highlighted during the meeting include: (i) US and International surveillance programs to understand AMR in NG; (ii) the US National Strategy for combating antimicrobial-resistant bacteria; (iii) surveillance needs, challenges, and novel technologies; (iv) plasmid-mediated and chromosomally mediated mechanisms of AMR in NG; (v) novel therapeutic (eg, sialic acid analogs, factor H [FH]/Fc fusion molecule, monoclonal antibodies, topoisomerase inhibitors, fluoroketolides, LpxC inhibitors) and preventative (eg, peptide mimic) strategies to combat infection. The way forward will require renewed political will, new funding initiatives, and collaborations across academic and commercial research and public health programs

    Point-of-Care Sexually Transmitted Infection Diagnostics: Proceedings of the STAR Sexually Transmitted Infection-Clinical Trial Group Programmatic Meeting.

    Get PDF
    The goal of the point-of-care (POC) sexually transmitted infection (STI) Diagnostics meeting was to review the state-of-the-art research and develop recommendations for the use of POC STI diagnostics. Experts from academia, government, nonprofit, and industry discussed POC diagnostics for STIs such as Chlamydia trachomatis, human papillomavirus, Neisseria gonorrhoeae, Trichomonas vaginalis, and Treponema pallidum. Key objectives included a review of current and emerging technologies, clinical and public health benefits, POC STI diagnostics in developing countries, regulatory considerations, and future areas of development. Key points of the meeting are as follows: (i) although some rapid point-of-care tests are affordable, sensitive, specific, easy to perform, and deliverable to those who need them for select sexually transmitted infections, implementation barriers exist at the device, patient, provider, and health system levels; (ii) further investment in research and development of point-of-care tests for sexually transmitted infections is needed, and new technologies can be used to improve diagnostic testing, test uptake, and treatment; (iii) efficient deployment of self-testing in supervised (ie, pharmacies, clinics, and so on) and/or unsupervised (ie, home, offices, and so on) settings could facilitate more screening and diagnosis that will reduce the burden of sexually transmitted infections; (iv) development of novel diagnostic technologies has outpaced the generation of guidance tools and documents issued by regulatory agencies; and (v) questions regarding quality management are emerging including the mechanism by which poor-performing diagnostics are removed from the market and quality assurance of self-testing is ensured

    Head-to-Head Comparison of Poxvirus NYVAC and ALVAC Vectors Expressing Identical HIV-1 Clade C Immunogens in Prime-Boost Combination with Env Protein in Nonhuman Primates.

    Get PDF
    UNLABELLED: We compared the HIV-1-specific cellular and humoral immune responses elicited in rhesus macaques immunized with two poxvirus vectors (NYVAC and ALVAC) expressing the same HIV-1 antigens from clade C, Env gp140 as a trimeric cell-released protein and a Gag-Pol-Nef polyprotein as Gag-induced virus-like particles (VLPs) (referred to as NYVAC-C and ALVAC-C). The immunization protocol consisted of two doses of the corresponding poxvirus vector plus two doses of a combination of the poxvirus vector and a purified HIV-1 gp120 protein from clade C. This immunogenicity profile was also compared to that elicited by vaccine regimens consisting of two doses of the ALVAC vector expressing HIV-1 antigens from clades B/E (ALVAC-vCP1521) plus two doses of a combination of ALVAC-vCP1521 and HIV-1 gp120 protein from clades B/E (similar to the RV144 trial regimen) or clade C. The results showed that immunization of macaques with NYVAC-C stimulated at different times more potent HIV-1-specific CD4(+) T-cell responses and induced a trend toward higher-magnitude HIV-1-specific CD8(+) T-cell immune responses than did ALVAC-C. Furthermore, NYVAC-C induced a trend toward higher levels of binding IgG antibodies against clade C HIV-1 gp140, gp120, or murine leukemia virus (MuLV) gp70-scaffolded V1/V2 and toward best cross-clade-binding IgG responses against HIV-1 gp140 from clades A, B, and group M consensus, than did ALVAC-C. Of the linear binding IgG responses, most were directed against the V3 loop in all immunization groups. Additionally, NYVAC-C and ALVAC-C also induced similar levels of HIV-1-neutralizing antibodies and antibody-dependent cellular cytotoxicity (ADCC) responses. Interestingly, binding IgA antibody levels against HIV-1 gp120 or MuLV gp70-scaffolded V1/V2 were absent or very low in all immunization groups. Overall, these results provide a comprehensive survey of the immunogenicity of NYVAC versus ALVAC expressing HIV-1 antigens in nonhuman primates and indicate that NYVAC may represent an alternative candidate to ALVAC in the development of a future HIV-1 vaccine. IMPORTANCE: The finding of a safe and effective HIV/AIDS vaccine immunogen is one of the main research priorities. Here, we generated two poxvirus-based HIV vaccine candidates (NYVAC and ALVAC vectors) expressing the same clade C HIV-1 antigens in separate vectors, and we analyzed in nonhuman primates their immunogenicity profiles. The results showed that immunization with NYVAC-C induced a trend toward higher HIV-1-specific cellular and humoral immune responses than did ALVAC-C, indicating that this new NYVAC vector could be a novel optimized HIV/AIDS vaccine candidate for human clinical trials.This investigation was supported by the PTVDC/CAVD program with support from the Bill and Melinda Gates Foundation (BMGF). Humoral immune monitoring data was supported by the BMGF CAVIMC 1032144 grant and the NIH/NIAID Duke Center for AIDS Research (CFAR) 5P30 AI064518. Novartis Vaccines received support for this work under contract number HHSN266200500007C from DAIDS-NIAID-NIH.This is the accepted manuscript. The final version is available at http://jvi.asm.org/content/early/2015/05/29/JVI.01265-15.abstract

    Antimicrobial Resistance in Neisseria gonorrhoeae

    No full text

    Nedd4-mediated increase in HIV-1 Gag and Env proteins and immunity following DNA-vaccination of BALB/c mice.

    No full text
    The late assembly domain of many viruses is critical for budding. Within these domains, encoded in viral structural proteins, are the conserved motifs PTAP, PPxY and YPxL. These sequences are the key determinants for association of viral proteins with intracellular molecules such as Tsg101, Nedd4 and AIP1/ALIX. While roles for Tsg101 and AIP1/ALIX in HIV-1 budding have been well established, less is known about the role of Nedd4. Recent studies, however, have identified a function for Nedd4-like protein in HIV-1 release. In this study, we investigated post-transcriptional changes of Nedd4 following SHIVSF162P3 infection of rhesus macaques, its role on HIV-1 p24 and gp120 levels in vitro and its potential as an immune modulator in HIV vaccination of BALB/c mice. Increased Nedd4 protein levels were noted in both CD4+ and CD8+ T cells following SHIVSF162P3-infection of naïve macaques. Transient co-transfection studies in 293 cells with HXB2 and Nedd4 demonstrated a Nedd4-mediated increase in p24 and gp120 levels. This increase was found to be dependent on the Ca2+/calmodulin-regulated phospholipid binding C2 domain and not ubiquitin ligase activity or HIV LTR activity. Co-transfection of Nedd4 with plasmid DNA expressing Gag or Env was further shown to augment both intracellular and extracellular Gag or Env proteins. To assess the potential of Nedd4 as an immune modulator, BALB/c mice were immunized intramuscularly with plasmid DNA encoding HIV gag, env and Nedd4. Nedd4 co-administration was found to increase serum anti-p24 but not anti-gp120 antibodies. Nedd4 co-injection was found to have no affect on Gag- or Env-specific IFNγ but had a trend of increased Gag-specific IL-6, IL-17A and TNFα that was not seen following Env stimulation. Based on our initial findings, Nedd4-mediated changes in HIV protein levels and its potential use in HIV-1 vaccine development warrants further investigation
    corecore