5 research outputs found

    Sentinel-2 Satellite Image Time-Series Land Cover Classification with Bernstein Copula Approach

    No full text
    A variety of remote sensing applications call for automatic optical classification of satellite images. Recently, satellite missions, such as Sentinel-2, allow us to capture images in real-time of the Earth’s scenario. The classification of this large amount of data requires increasingly precise and fast methods, which must take into account not only the spectral features dependence of each individual image but also that of the temporal ones. Copulas are an excellent statistical tool, able to model joint distributions between even random variables. In this paper, we propose a new approach for Satellite Image Time-Series (SITS) land cover classification, which combines the matrix factorization to reduce the dimensionality of the data and the use of copulas distribution to model the dependencies. We will show how the use of particular copulas can improve the accuracy of classification compared to the latest methodologies used for the classification task, such as those using Neural Networks. Experiments were conducted at a study site located on Reunion Island, using Sentinel-2 SITS data. Results are compared to those achieved by several approaches commonly used to address SITS-based land cover mapping and show that the use of copulas, in combination with the matrix factorization, achieved the highest classification yield compared to competing approaches

    Spline based Hermite quasi-interpolation for univariate time series

    No full text
    In this article the authors introduce a spline Hermite quasi -interpolation technique for the preprocessing operations of imputation and smoothing of univariate time series. The constructed model is then applied for the forecast and for the anomaly detection. In particular, for the latter case, algorithms based on the combination of quasi-interpolation, dynamic copulas and clustering have been proposed. Some numerical results are included showing the effectiveness of the presented techniques

    Sentinel-2 Satellite Image Time-Series Land Cover Classification with Bernstein Copula Approach

    No full text
    International audienceA variety of remote sensing applications call for automatic optical classification of satellite images. Recently, satellite missions, such as Sentinel-2, allow us to capture images in real-time of the Earth’s scenario. The classification of this large amount of data requires increasingly precise and fast methods, which must take into account not only the spectral features dependence of each individual image but also that of the temporal ones. Copulas are an excellent statistical tool, able to model joint distributions between even random variables. In this paper, we propose a new approach for Satellite Image Time-Series (SITS) land cover classification, which combines the matrix factorization to reduce the dimensionality of the data and the use of copulas distribution to model the dependencies. We will show how the use of particular copulas can improve the accuracy of classification compared to the latest methodologies used for the classification task, such as those using Neural Networks. Experiments were conducted at a study site located on Reunion Island, using Sentinel-2 SITS data. Results are compared to those achieved by several approaches commonly used to address SITS-based land cover mapping and show that the use of copulas, in combination with the matrix factorization, achieved the highest classification yield compared to competing approaches

    A Novel Fractional-Order RothC Model

    No full text
    A new fractional q-order variation of the RothC model for the dynamics of soil organic carbon is introduced. A computational method based on the discretization of the analytic solution along with the finite-difference technique are suggested and the stability results for the latter are given. The accuracy of the scheme, in terms of the temporal step size h, is confirmed through numerical testing of a constructed analytic solution. The effectiveness of the proposed discrete method is compared with that of the classical discrete RothC model. Results from real-world experiments show that, by adjusting the fractional order q and the multiplier term ζ(t,q), a better match between simulated and actual data can be achieved compared to the traditional integer-order model

    Using remote sensing data within an optimal spatiotemporal model for invasive plant management: the case of Ailanthus altissima in the Alta Murgia National Park

    Get PDF
    Abstract We tackle the problem of coupling a spatiotemporal model for simulating the spread and control of an invasive alien species with data coming from image processing and expert knowledge. In this study, we implement a spatially explicit optimal control model based on a reaction–diffusion equation which includes an Holling II type functional response term for modeling the density control rate. The model takes into account the budget constraint related to the control program and searches for the optimal effort allocation for the minimization of the invasive alien species density. Remote sensing and expert knowledge have been assimilated in the model to estimate the initial species distribution and its habitat suitability, empirically extracted by a land cover map of the study area. The approach has been applied to the plant species Ailanthus altissima (Mill.) Swingle within the Alta Murgia National Park. This area is one of the Natura 2000 sites under the study of the ongoing National Biodiversity Future Center (NBFC) funded by the Italian National Recovery and Resilience Plan (NRRP), and pilot site of the finished H2020 project ECOPOTENTIAL, which aimed at the integration of modeling tools and Earth Observations for a sustainable management of protected areas. Both the initial density map and the land cover map have been generated by using very high resolution satellite images and validated by means of ground truth data provided by the EU Life Alta Murgia Project (LIFE12 BIO/IT/000213), a project aimed at the eradication of A. altissima in the Alta Murgia National Park
    corecore