1,638 research outputs found

    Extracting Information from Qubit-Environment Correlations

    Full text link
    Most works on open quantum systems generally focus on the reduced physical system by tracing out the environment degrees of freedom. Here we show that the qubit distributions with the environment are essential for a thorough analysis, and demonstrate that the way that quantum correlations are distributed in a quantum register is constrained by the way in which each subsystem gets correlated with the environment. For a two-qubit system coupled to a common dissipative environment E\mathcal{E}, we show how to optimise interqubit correlations and entanglement via a quantification of the qubit-environment information flow, in a process that, perhaps surprisingly, does not rely on the knowledge of the state of the environment. To illustrate our findings, we consider an optically-driven bipartite interacting qubit ABAB system under the action of E\mathcal{E}. By tailoring the light-matter interaction, a relationship between the qubits early stage disentanglement and the qubit-environment entanglement distribution is found. We also show that, under suitable initial conditions, the qubits energy asymmetry allows the identification of physical scenarios whereby qubit-qubit entanglement minima coincide with the extrema of the AEA\mathcal{E} and BEB\mathcal{E} entanglement oscillations.Comment: 4 figures, 9 page

    Conditional quantum nonlocality in dimeric and trimeric arrays of organic molecules

    Get PDF
    Arrays of covalently bound organic molecules possess potential for light-harvesting and energy transfer applications due to the strong coherent dipole-dipole coupling between the transition dipole moments of the molecules involved. Here, we show that such molecular systems, based on perylene-molecules, can be considered as arrays of qubits that are amenable for laser-driven quantum coherent control. The perylene monomers exhibit dephasing times longer than four orders of magnitude a typical gating time, thus allowing for the execution of a large number of gate operations on the sub-picosecond timescale. Specifically, we demonstrate quantum logic gates and entanglement in bipartite (dimer) and tripartite (trimer) systems of perylene-based arrays. In dimers, naturally entangled states with a tailored degree of entanglement can be produced. The nonlocality of the molecular trimer entanglement is demonstrated by testing Mermin's (Bell-like) inequality violation.Comment: 14 pages, 8 figures, comments are welcom

    Correlations in optically-controlled quantum emitters

    Full text link
    We address the problem of optically controlling and quantifying the dissipative dynamics of quantum and classical correlations in a set-up of individual quantum emitters under external laser excitation. We show that both types of correlations, the former measured by the quantum discord, are present in the system's evolution even though the emitters may exhibit an early stage disentanglement. In the absence of external laser pumping,we demonstrate analytically, for a set of suitable initial states, that there is an entropy bound for which quantum discord and entanglement of the emitters are always greater than classical correlations, thus disproving an early conjecture that classical correlations are greater than quantum correlations. Furthermore, we show that quantum correlations can also be greater than classical correlations when the system is driven by a laser field. For scenarios where the emitters' quantum correlations are below their classical counterparts, an optimization of the evolution of the quantum correlations can be carried out by appropriately tailoring the amplitude of the laser field and the emitters' dipole-dipole interaction. We stress the importance of using the entanglement of formation, rather than the concurrence, as the entanglement measure, since the latter can grow beyond the total correlations and thus give incorrect results on the actual system's degree of entanglement.Comment: 11 pages, 10 figures, this version contains minor modifications; to appear in Phys. Rev.

    Emergence of maximal hidden quantum correlations and its trade-off with the filtering probability in dissipative two-qubit systems

    Full text link
    We investigate the behaviour of quantum CHSH-nonlocality, F3\rm F_3-steering, and usefulness for teleportation in an interacting two-qubit dissipative system. We show regimes where these three quantum correlations can be extracted by means of local filtering operations, despite them not being displayed in the bare natural time evolution. Moreover, we show the existence of local hidden state (LHS) and local hidden variable (LHV) models for some states during the dynamics and thus, showing that apparently-useless physical systems could still exhibit quantum correlations, which are hidden from us, but that can still be revealed by means of local filtering operations and therefore, displaying the phenomenon of \emph{hidden} quantum correlations. We furthermore show that there actually exists a trade-off between the amount of quantum correlations which can be extracted and the filtering probability with which such protocol can be implemented. From a theoretical point of view, the existence of such trade-off imposes a fundamental limit to the extraction of quantum correlations by local filtering operations. From a practical point of view on the other hand, the results here presented determine the amount of resources that should be invested in order to extract such maximal hidden quantum correlations.Comment: 15 pages; 5 Figures; Discussion on the trade-off between hidden correlations and their probability of occurrence has been included and improve
    • …
    corecore