7 research outputs found

    Synthesis and characterization of TiO2 chemically modified by Pd(II) 2-aminothiazole complex for the photocatalytic degradation of phenol

    No full text
    An investigation was made into the photocatalytic activity of in situ synthesized TiO2 chemically modified by Pd(II) 2-aminothiazole complex for phenol degradation at different pH values. At longer reaction times, the bare titania presented far poorer pbotoactivity than the modified catalysts in the entire range of pH studied. The catalyst complexed with Pd(II) was more efficient than the metal-free Pd, irrespective of pH and reaction time, suggesting that metal plays an important role. A cooperative mechanism is proposed, involving the possible photoactivation of both TiO2 and sensitizer. (C) 2007 Elsevier B.V. All rights reserved

    Enhanced photocatalytic reduction of Hg(II) in aqueous medium by 2-aminothiazole-modified TiO2 particles

    No full text
    This work describes the synthesis and characterization of 2-aminothiazole-modified titania and its application on Hg (II) photoreduction in aqueous medium. Infrared spectroscopy confirmed the chemical modification of the titania matrix. The number of 2-aminothiazole groups attached to the titania was determined by Kjeldahl's method. The photocatalytic experiments were carried out in a cylindrical photoreactor thermostatted at 298 K. The resulting modified photocatalyst 2-aminothiazole titania (TiAT) revealed an enhance in the Hg (II) photoreduction capacity at studied pH values (3, 7 and 9). In addition, sorption studies showed that the photocatalyst TiAT presented a lower equilibrium time and a higher sorption capacity of Hg(II) ion, demonstrating that sorption plays a fundamental role in the photoreduction mechanism. ©2006 Sociedade Brasileira de Química

    Determination of Cd(II), Cu(II) and Ni(II) in aqueous samples by ICP-OES after on-line preconcentration in column packed with silica modified with 2-aminothiazole

    No full text
    This work describes the synthesis and characterization of 2-aminothiazole modified silica gel (SiAT) and the studies of adsorption and pre-concentration (in batch and using a flow-injection system coupled with optical emission spectrometer) of Cd(II), Cu(II) and Ni(II) in aqueous medium. The adsorption capacity for each metal ions in mmolg(-1) was: Cu(II) = 1.18, Ni(II) = 1.15 and Cd(II) = 1.10. The results obtained in the flow experiments showed about 100% of recovering of the metal ions adsorbed in a mini-column packed with 100 mg of SiAT, using 100 mu L of 2.0 mol L-1 HCl solution as eluent. The quantitative sorption-desorption of the metal ions made possible the application of a flow-injection system in the pre-concentration and quantification by ICP-OES of metal ions at trace level in natural water samples

    Molecular and crystal structure of trans-(dicyanato)-bis(triphenylphosphine)palladium(II)

    No full text
    The triphenylphosphine (PPh3) displaces the acetonitrile from [PdCl2(CH3CN)2], and subsequent addition of the potassium cyanate causes substitution of the chloro ligand by NCO- to yield trans-[Pd(NCO)2(PPh3)2]. The complex was characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. The title compound was crystallized in a triclinic system, space group P1 with a = 9.213(3)Å, b = 9.781(7)Å, c = 10.483(5)Å, α = 111.39(5)°, β = 93.49(3)°, γ = 103.81(4)°, V = 845.0(1)Å3, Z = 1. The coordination geometry around Pd(II) in this complex is nearly square-planar, with the ligands in a trans relationship. 2008 © The Japan Society for Analytical Chemistry

    Attachment of 2,2-bipyridine onto a silica gel for application as a sequestering agent for copper, cadmium and lead ions from an aqueous medium

    No full text
    A method was developed to attach 2,2-bipyridine (BP) onto a silica gel surface by a two-step reaction. The first step consisted of a reaction between the matrix and a silylating agent, 3-chloropropyltrimeth-oxysilane. In the second step of the reaction, a ligand molecule was attached onto Si-CPTS, yielding the product Si-BP. The modified material contained 0.431 +/- 0.01 mmol of 2,2-bipyridine per gram of modified silica, as confirmed by FT-IR spectra of the proposed structure. The surface modification was characterized by the BET technique, which revealed a decrease in the surface area from 614 to 450 m(2) g(-1). The series of adsorption isotherms for the metal ions were adjusted to fit a modified Langmuir equation. The maximum number of moles of copper, cadmium and lead ions adsorbed was 0.64, 0.53, and 0.54 mmol g-1, respectively. The surface saturation was calculated as phi fraction and the values obtained, Cu(II) = 1.160, Cd(II) = 1.044 and Pb(II) = 0.997, suggest a type 1:1 metal-ligand complex.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
    corecore