426 research outputs found

    Do static sources respond to massive scalar particles from the Hawking radiation as uniformly accelerated ones do in the inertial vacuum?

    Full text link
    We revisit the recently found equivalence for the response of a static scalar source interacting with a {\em massless} Klein-Gordon field when the source is (i) static in Schwarzschild spacetime, in the Unruh vacuum associated with the Hawking radiation and (ii) uniformly accelerated in Minkowski spacetime, in the inertial vacuum, provided that the source's proper acceleration is the same in both cases. It is shown that this equivalence is broken when the massless Klein-Gordon field is replaced by a {\em massive} one.Comment: 4 pages, 2 figure

    A 'cyanoacrylate case' for developing fingerprints in cars

    Get PDF
    A portable case has been developed by which cyanoacrylate (super glue) fuming can be used inside a vehicle suspected of being involved in serious crime. The car itself serves as a fumigation chamber and the cyanoacrylate vapours are fed into the car via a hose. Connected to the hose and suspended inside the car is a vapour diffuser. The cyanoacrylate originates from a portable case where there is a sealed heater and also a command panel with hygrometer and thermometer for a technician to control the process. There is also space inside the case for other necessary equipment

    Interaction of Hawking radiation with static sources in deSitter and Schwarzschild-deSitter spacetimes

    Full text link
    We study and look for similarities between the response rates RdS(a0,Λ)R^{\rm dS}(a_0, \Lambda) and RSdS(a0,Λ,M)R^{\rm SdS}(a_0, \Lambda, M) of a static scalar source with constant proper acceleration a0a_0 interacting with a massless, conformally coupled Klein-Gordon field in (i) deSitter spacetime, in the Euclidean vacuum, which describes a thermal flux of radiation emanating from the deSitter cosmological horizon, and in (ii) Schwarzschild-deSitter spacetime, in the Gibbons-Hawking vacuum, which describes thermal fluxes of radiation emanating from both the hole and the cosmological horizons, respectively, where Λ\Lambda is the cosmological constant and MM is the black hole mass. After performing the field quantization in each of the above spacetimes, we obtain the response rates at the tree level in terms of an infinite sum of zero-energy field modes possessing all possible angular momentum quantum numbers. In the case of deSitter spacetime, this formula is worked out and a closed, analytical form is obtained. In the case of Schwarzschild-deSitter spacetime such a closed formula could not be obtained, and a numerical analysis is performed. We conclude, in particular, that RdS(a0,Λ)R^{\rm dS}(a_0, \Lambda) and RSdS(a0,Λ,M)R^{\rm SdS}(a_0, \Lambda, M) do not coincide in general, but tend to each other when Λ→0\Lambda \to 0 or a0→∞a_0 \to \infty. Our results are also contrasted and shown to agree (in the proper limits) with related ones in the literature.Comment: ReVTeX4 file, 9 pages, 5 figure

    Low-energy sector quantization of a massless scalar field outside a Reissner-Nordstrom black hole and static sources

    Get PDF
    We quantize the low-energy sector of a massless scalar field in the Reissner-Nordstrom spacetime. This allows the analysis of processes involving soft scalar particles occurring outside charged black holes. In particular, we compute the response of a static scalar source interacting with Hawking radiation using the Unruh (and the Hartle-Hawking) vacuum. This response is compared with the one obtained when the source is uniformly accelerated in the usual vacuum of the Minkowski spacetime with the same proper acceleration. We show that both responses are in general different in opposition to the result obtained when the Reissner-Nordstrom black hole is replaced by a Schwarzschild one. The conceptual relevance of this result is commented.Comment: 12 pages (REVTEX), no figure

    Latent solitons, black strings, black branes, and equations of state in Kaluza-Klein models

    Full text link
    In Kaluza-Klein models with an arbitrary number of toroidal internal spaces, we investigate soliton solutions which describe the gravitational field of a massive compact object. We single out the physically interesting solution corresponding to a point-like mass. For the general solution we obtain equations of state in the external and internal spaces. These equations demonstrate that the point-like mass soliton has dust-like equations of state in all spaces. We also obtain the PPN parameters, which give the possibility to obtain the formulas for perihelion shift, deflection of light and time delay of radar echoes. Additionally, the gravitational experiments lead to a strong restriction on the parameter of the model: τ=−(2.1±2.3)×10−5\tau = -(2.1\pm 2.3)\times 10^{-5}. The point-like mass solution contradicts this restriction. The condition τ=0\tau=0 satisfies the experimental limitation and defines a new class of solutions which are indistinguishable from general relativity. We call such solutions latent solitons. Black strings and black branes belong to this class. Moreover, the condition of stability of the internal spaces singles out black strings/branes from the latent solitons and leads uniquely to the black string/brane equations of state pi=−ϵ/2p_i=-\epsilon/2, in the internal spaces and to the number of the external dimensions d0=3d_0=3. The investigation of multidimensional static spherically symmetric perfect fluid with dust-like equation of state in the external space confirms the above results.Comment: 8 pages, Revtex4, no figures, minor changes adde

    Asymmetric wormholes in Palatini f(R)f(\mathcal{R}) gravity: Energy conditions, absorption and quasibound states

    Full text link
    We investigate the absorption properties of reflection-asymmetric wormholes constructed via the thin-shell formalism in Palatini f(R)f({\cal R}) gravity. Such wormholes come from the matching of two Reissner-Nordstr\"om spacetimes at a time-like hypersurface (shell), which, according to the junction conditions in Palatini f(R)f({\cal R}) gravity, can have positive or negative energy density. Using numerical methods we investigate several configurations that satisfy the junction conditions, and analyze how the parameters of the system affect the absorption spectra. We confirm that the absorption cross section of wormholes at low frequencies significantly departs from that of black holes, and observe that in configurations made out of two naked singularities, the absorption spectra exhibit new features due to the effective light ring associated to the wormhole throat. The possibility of observing the presence of resonances at high frequencies is also discussed.Comment: 18 pages, 13 figures, revtex4-2 styl

    Multinational cooperation and intervention: small steps to better results

    Get PDF
    Through the latter years of the twentieth century and early years of the twenty-first century, there have been a number of high-profile multinational interven­tions by the international community in countries deemed to be sufficiently un­stable to present a threat to global peace or, more controversially, to local pop­ulations. Beginning with the tardy but largely successful intervention in the Yu­goslav civil war in 1990 and culminating in the soon to conclude intervention in Afghanistan after the Al Qaeda attacks on the USA in 2001, there have also been military interventions in Iraq in 2003 and Libya in 2011. The list is not exhaustive. There have been other interventions elsewhere, but these particular examples of military intervention mainly conducted by western powers provide illuminat­ing insights into the success and, sometimes, the failure of such multinational security responses to perceived international threats
    • …
    corecore