64 research outputs found

    Zn(II)-curc targets p53 in thyroid cancer cells

    Get PDF
    P53 mutation is a common event in many cancers, including thyroid carcinoma. Defective p53 activity promotes cancer resistance to therapies and a more malignant phenotype, acquiring oncogenic functions. Rescuing the function of mutant p53 (mutp53) protein is an attractive anticancer therapeutic strategy. Zn(II)-curc is a novel small molecule that has been shown to target mutp53 protein in several cancer cells, but its effect in thyroid cancer cells remains unclear. Here, we investigated whether Zn(II)-curc could affect p53 in thyroid cancer cells with both p53 mutation (R273H) and wild-type p53. Zn(II)-curc induced mutp53H273 downregulation and reactivation of wild-type functions, such as binding to canonical target promoters and target gene transactivation. This latter effect was similar to that induced by PRIMA-1. In addition, Zn(II)-curc triggered p53 target gene expression in wild-type p53-carrying cells. In combination treatments, Zn(II)-curc enhanced the antitumor activity of chemotherapeutic drugs, in both mutant and wild-type-carrying cancer cells. Taken together, our data indicate that Zn(II)-curc promotes the reactivation of p53 in thyroid cancer cells, providing in vitro evidence for a potential therapeutic approach in thyroid cancers

    Interplay between endoplasmic reticulum (ER) stress and autophagy induces mutant p53H273 degradation

    Get PDF
    The unfolded protein response (UPR) is an adaptive response to intrinsic and external stressors, and it is mainly activated by the accumulation of misfolded proteins at the endoplasmic reticulum (ER) lumen producing ER stress. The UPR signaling network is interconnected with autophagy, the proteolytic machinery specifically devoted to clearing misfolded proteins in order to survive bioenergetic stress and/or induce cell death. Oncosuppressor TP53 may undergo inactivation following missense mutations within the DNA-binding domain (DBD), and mutant p53 (mutp53) proteins may acquire a misfolded conformation, often due to the loss of the DBD-bound zinc ion, leading to accumulation of hyperstable mutp53 proteins that correlates with more aggressive tumors, resistance to therapies, and poorer outcomes. We previously showed that zinc supplementation induces mutp53 protein degradation by autophagy. Here, we show that mutp53 (i.e., Arg273) degradation following zinc supplementation is correlated with activation of ER stress and of the IRE1α/XBPI arm of the UPR. ER stress inhibition with chemical chaperone 4-phenyl butyrate (PBA) impaired mutp53 downregulation, which is similar to IRE1α/XBPI specific inhibition, reducing cancer cell death. Knockdown of mutp53 failed to induce UPR/autophagy activation indicating that the effect of zinc on mutp53 folding was likely the key event occurring in ER stress activation. Recently discovered small molecules targeting components of the UPR show promise as a novel anticancer therapeutic intervention. However, our findings showing UPR activation during mutp53 degradation indicate that caution is necessary in the design of therapies that inhibit UPR components

    Thin Film Electrodeposition of Ir(III) Cyclometallated Complexes

    Get PDF
    Novel electropolymerizable Ir(III) cyclometallated complexes have been synthesized and characterized. In these complexes the cyclometallated ligands are either 2-phenylpyridine H(PhPy) or benzothiazole-triphenylamine H(BzTh-tpa), while the Ir(III) coordination sphere is completed by a Schiff base substituted with a triphenylamine fragment. A complete electrochemical study has been conducted on all complexes, in order to verify the feasibility of electropolymerization and to elucidate the role of the specific position of the triphenylamine moiety in the molecular structure. Homogeneous thin films of Ir(III) metallopolymers have been successfully obtained through electropolymerization process

    Hydroamination of alkynes catalyzed by NHC-Gold(I) complexes: the non-monotonic effect of substituted arylamines on the catalyst activity

    Get PDF
    : Imines are valuable key compounds for synthesizing several nitrogen-containing molecules used in biological and industrial fields. They have been obtained, as highly regioselective Markovnikov products, by reacting several alkynes with arylamines in the presence of three new N-Heterocyclic carbene gold(I) complexes (3b, 4b, and 6b) together with the known 1-2b and 7b gold complexes as well as silver complexes 1-2a. Gold(I) complexes were investigated by means of NMR, mass spectroscopy, elemental analysis, and X-ray crystallographic studies. Accurate screening of co-catalysts and solvents led to identifying the best reaction conditions and the most active catalyst (2b) in the model hydroamination of phenylacetylene with aniline. Complex 2b was then tested in the hydroamination of alkynes with a wide variety of arylamines yielding a lower percentage of product when arylamines with both electron-withdrawing and electron-donating substituents were involved. Computational studies on the rate-determining step of hydroamination were conducted to shed light on the significantly different yields observed when reacting arylamines with different substituents

    Photoconductive properties and electronic structure in 3,5-disubstituted 2-(2′-pyridyl)pyrroles coordinated to a Pd(II) salicylideneiminate synthon

    Get PDF
    The synthesis and the electrochemical, photophysical, structural, and photoconductive properties of three new heteroleptic Pd(II) complexes with various 3′,5′- disubstituted-2-(2′-pyridil) pyrroles H(N^N) as coordinated ligands are reported. The coordination of the metal center was completed by a functionalized Schiff base H(O^N) used as an ancillary ligand. The [(N^N)Pd(O^N)] complexes showed highly interesting photoconductive properties which have been correlated to their electronic and molecular structures. Theoretical density functional theory (DFT) and time-dependent DFT calculations were performed, and the results were confronted with the organization in crystalline phase, allowing to point out that the photoconductive properties are mainly a consequence of an efficient intramolecular ligand-to-metal charge transfer, combined to the proximity between the central metal and the donor moieties in the solid-state molecular stacks. The reported results confirm that these new Pd(II) complexes form a novel class of organometallic photoconductors with intrinsic characteristics suitable for molecular semiconductors applications.Supported by Ministero dell’Istruzione, dell’Universitàe della Ricerca by the ELIOTROPO.Peer reviewe

    Complessi di Pd(II) con 2,2’-piridilpirroli-3,5-disostituiti: sintesi, analisi strutturale e proprietà

    No full text
    Dottorato di Ricerca in Metodologie Chimiche Inorganiche, Ciclo XXI, a.a. 2007-2008Università della Calabri
    • …
    corecore