143 research outputs found

    Cell and Molecular Biology Underpinning the Effects of PEDF on Cancers in General and Osteosarcoma in Particular

    Get PDF
    Cancer is becoming an increasingly common disease in which abnormal cells aggressively grow, invade, and metastasize. In this paper, we review the biological functions of PEDF (pigmented epithelium-derived factor) against cancer, with a focus on a particular type of bone cancer called osteosarcoma. PEDF is a 50 kDa glycoprotein and is a potent inhibitor of angiogenesis, via its ability to decrease proliferation and migration of endothelial cells. This paper critically examines the anticancer activities of PEDF via its role in antiangiogenesis, apoptosis-mediated tumor suppression, and increased tumor cell differentiation. Recently, an orthotopic model of osteosarcoma was used to show that treatment with PEDF had the greatest impact on metastases, warranting an evaluation of PEDF efficacy in other types of cancers

    Targeting of small molecule anticancer drugs to the tumour and its vasculature using cationic liposomes: lessons from gene therapy

    Get PDF
    Cationic (positively charged) liposomes have been tested in various gene therapy clinical trials for neoplastic and other diseases. They have demonstrated selectivity for tumour vascular endothelial cells raising hopes for both antiangiogenic and antivascular therapies. They are also capable of being selectively delivered to the lungs and liver when administered intravenously. These vesicles are being targeted to the tumour in various parts of the body by using advanced liposomal systems such as ligand-receptor and antibody-antigen combinations. At present, the transferrin receptor is commonly used for cancer-targeted drug delivery systems including cationic liposomes. This review looks at the growing utility of these vesicles for delivery of small molecule anticancer drugs

    The Emerging Role of PEDF in Stem Cell Biology

    Get PDF
    Encoded by a single gene, PEDF is a 50 kDa glycoprotein that is highly conserved and is widely expressed among many tissues. Most secreted PEDF deposits within the extracellular matrix, with cell-type-specific functions. While traditionally PEDF is known as a strong antiangiogenic factor, more recently, as this paper highlights, PEDF has been linked with stem cell biology, and there is now accumulating evidence demonstrating the effects of PEDF in a variety of stem cells, mainly in supporting stem cell survival and maintaining multipotency

    Direct anti-metastatic efficacy by the DNA enzyme Dz13 and downregulated MMP-2, MMP-9 and MT1-MMP in tumours

    Get PDF
    The DNA enzyme Dz13, targeted against the oncogene c-Jun, is capable of inhibiting various model tumours in mice albeit in ectopic models of neoplasia. In previous studies using orthotopic models of disease, the inhibitory effects of Dz13 on secondary growth was a direct result of growth inhibition at the primary lesion site. Thus, the direct and genuine effects on metastasis were not gauged. In this study, Dz13 was able to inhibit both locoregional and distal metastasis of tumour cells in mice, in studies where the primary tumours were unaffected due to the late and clinically-mimicking nature of treatment commencement. In addition, the effect of Dz13 against tumours has now been extended to encompass breast and prostate cancer. Dz13 upregulated the matrix metalloproteinase (MMP)-2 and MMP-9, and decreased expression of MT1-MMP (MMP-14) in cultured tumour cells. However, in sections of ectopic tumours treated with Dz13, both MMP-2 and MMP-9 were downregulated. Thus, not only is Dz13 able to inhibit tumour growth at the primary site, but also able to decrease the ability of neoplastic cells to metastasise. These findings further highlight the growing potential of Dz13 as an antineoplastic agent

    Efficacy of Continuously Administered PEDF-Derived Synthetic Peptides against Osteosarcoma Growth and Metastasis

    Get PDF
    The potent antiangiogenic pigment epithelium-derived factor (PEDF) has shown promise against osteosarcoma, a tumour that originates in the bone and metastasises to the lungs. Neurotrophic, antiangiogenic, antiproliferative, and antimetastatic properties of PEDF have been attributed to a number of functional epitopes on the PEDF glycoprotein. StVOrth-2 (residues 78–102) and StVOrth-3 (residues 90–114) are two PEDF-derived peptides based on these functional epitopes. StVOrth-2 has previously been shown to inhibit osteosarcoma cell proliferation, while StVOrth-3 increased osteosarcoma cell adhesion to collagen I in vitro. In this paper, we have evaluated systemically and continuously delivered StVOrth-2 and StVOrth-3 using a clinically relevant murine model of osteosarcoma with spontaneous metastasis. Treatment with StVOrth-2 or StVOrth-3 with microosmotic pumps was initiated after primary osteosarcoma was established in the tibia. While treatment with StVOrth-2 and StVOrth-3 did not appear to affect local tumour invasion, tumour necrosis or apoptosis, StVOrth-2 predominantly restricted the growth of primary tumours, while StVOrth-3 restricted the burden of pulmonary metastatic disease. No peptide caused gross toxicity in mouse tissues as assessed by measuring weight of animals, serum biochemistry, and gross tissue observation. The differential effects exhibited by StVOrth-2 and StVOrth-3 in this orthotopic model of osteosarcoma may be related to the functional epitopes on the PEDF glycoprotein that they represent

    New clinically relevant, orthotopic mouse models of human chondrosarcoma with spontaneous metastasis

    Get PDF
    Chondrosarcoma responds poorly to adjuvant therapy and new, clinically relevant animal models are required to test targeted therapy. Two human chondrosarcoma cell lines, JJ012 and FS090, were evaluated for proliferation, colony formation, invasion, angiogenesis and osteoclastogenesis. Cell lines were also investigated for VEGF, MMP-2, MMP-9, and RECK expression. JJ012 and FS090 were injected separately into the mouse tibia intramedullary canal or tibial periosteum. Animal limbs were measured, and x-rayed for evidence of tumour take and progression. Tibias and lungs were harvested to determine the presence of tumour and lung metastases. JJ012 demonstrated significantly higher proliferative capacity, invasion, and colony formation in collagen I gel. JJ012 conditioned medium stimulated endothelial tube formation and osteoclastogenesis with a greater potency than FS090 conditioned medium, perhaps related to the effects of VEGF and MMP-9. In vivo, tumours formed in intratibial and periosteal groups injected with JJ012, however no mice injected with FS090 developed tumours. JJ012 periosteal tumours grew to 3 times the non-injected limb size by 7 weeks, whereas intratibial injected limbs required 10 weeks to achieve a similar tumour size. Sectioned tumour tissue demonstrated features of grade III chondrosarcoma. All JJ012 periosteal tumours (5/5) resulted in lung micro-metastases, while only 2/4 JJ012 intratibial tumours demonstrated metastases. The established JJ012 models replicate the site, morphology, and many behavioural characteristics of human chondrosarcoma. Local tumour invasion of bone and spontaneous lung metastasis offer valuable assessment tools to test the potential of novel agents for future chondrosarcoma therapy

    The Molecular Pathogenesis of Osteosarcoma: A Review

    Get PDF
    Osteosarcoma is the most common primary malignancy of bone. It arises in bone during periods of rapid growth and primarily affects adolescents and young adults. The 5-year survival rate for osteosarcoma is 60%–70%, with no significant improvements in prognosis since the advent of multiagent chemotherapy. Diagnosis, staging, and surgical management of osteosarcoma remain focused on our anatomical understanding of the disease. As our knowledge of the molecular pathogenesis of osteosarcoma expands, potential therapeutic targets are being identified. A comprehensive understanding of these mechanisms is essential if we are to improve the prognosis of patients with osteosarcoma through tumour-targeted therapies. This paper will outline the pathogenic mechanisms of osteosarcoma oncogenesis and progression and will discuss some of the more frontline translational studies performed to date in search of novel, safer, and more targeted drugs for disease management
    corecore