323 research outputs found

    Surface Acoustic Wave Single-Electron Interferometry

    Full text link
    We propose an experiment to observe interference of a single electron as it is transported along two parallel quasi-one-dimensional channels trapped in a single minimum of a travelling periodic electric field. The experimental device is a modification of the surface acoustic wave (SAW) based quantum processor. Interference is achieved by creating a superposition of spatial wavefunctions between the two channels and inducing a relative phase shift via either a transverse electric field or a magnetic field. The interference can be used to estimate the decoherence time of an electron in this type of solid-state device

    Qubit-excitation-based adaptive variational quantum eigensolver

    Get PDF
    Abstract: Molecular simulations with the variational quantum eigensolver (VQE) are a promising application for emerging noisy intermediate-scale quantum computers. Constructing accurate molecular ansĂ€tze that are easy to optimize and implemented by shallow quantum circuits is crucial for the successful implementation of such simulations. AnsĂ€tze are, generally, constructed as series of fermionic-excitation evolutions. Instead, we demonstrate the usefulness of constructing ansĂ€tze with "qubit-excitation evolutions”, which, contrary to fermionic excitation evolutions, obey "qubit commutation relations”. We show that qubit excitation evolutions, despite the lack of some of the physical features of fermionic excitation evolutions, accurately construct ansĂ€tze, while requiring asymptotically fewer gates. Utilizing qubit excitation evolutions, we introduce the qubit-excitation-based adaptive (QEB-ADAPT)-VQE protocol. The QEB-ADAPT-VQE is a modification of the ADAPT-VQE that performs molecular simulations using a problem-tailored ansatz, grown iteratively by appending evolutions of qubit excitation operators. By performing classical numerical simulations for small molecules, we benchmark the QEB-ADAPT-VQE, and compare it against the original fermionic-ADAPT-VQE and the qubit-ADAPT-VQE. In terms of circuit efficiency and convergence speed, we demonstrate that the QEB-ADAPT-VQE outperforms the qubit-ADAPT-VQE, which to our knowledge was the previous most circuit-efficient scalable VQE protocol for molecular simulations

    Variational quantum chemistry requires gate-error probabilities below the fault-tolerance threshold

    Full text link
    The variational quantum eigensolver (VQE) is a leading contender for useful quantum advantage in the NISQ era. The interplay between quantum processors and classical optimisers is believed to make the VQE noise resilient. Here, we probe this hypothesis. We use full density-matrix simulations to rank the noise resilience of leading gate-based VQE algorithms in ground-state computations on a range of molecules. We find that, in the presence of noise: (i) ADAPT-VQEs that construct ansatz circuits iteratively outperform VQEs that use "fixed" ansatz circuits; and (ii) ADAPT-VQEs perform better when circuits are constructed from gate-efficient elements rather than physically-motivated ones. Our results show that, for a wide range of molecules, even the best-performing VQE algorithms require gate-error probabilities on the order of 10−610^{-6} to 10−410^{-4} to reach chemical accuracy. This is significantly below the fault-tolerance thresholds of most error-correction protocols. Further, we estimate that the maximum allowed gate-error probability scales inversely with the number of noisy (two-qubit) gates. Our results indicate that useful chemistry calculations with current gate-based VQEs are unlikely to be successful on near-term hardware without error correction.Comment: 17 pages, 8 figure
    • 

    corecore