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I. SUPPLEMENTARY NOTE 1

The expression for the single parameter energy gradient in equation (23) of the main text, can be derived as follows:
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In going from (1) to (2) we use that T̃p is skew-Hermitian, so that T̃p
†

= −T̃p. In the limit θp → 0 expression (2)
becomes equivalent to the expression in equation (23) of the main text.

II. SUPPLEMENTARY NOTE 2

Here we outline the method used to calculate the trial statevectors |ψ(θθθ)〉 in the classical numerical simulations
used for the results in this paper. Calculating the trial statevectors, is the most time consuming part of the numerical
simulations, and optimizing it is vital.

In this work, we are concerned with states of the form

|ψ(θθθ)〉 = U(θθθ)|ψ0〉 =

1∏
i=NU

eθiSi |ψ0〉, (3)

where NU is the size (the number of ansatz elements) of the ansatz U(θθθ), |ψ0〉 is the initial reference state, and Si is a
skew-Hermitian operator, which in this paper corresponds to either a qubit excitation operator, a fermionic excitation
operator, or a string of Pauli operators. Each of these three types of skew-Hermitian operators, also satisfies the
relation

S3
i = −Si. (4)

To calculate the 2NMO -dimensional state-vector representing |ψ(θθθ)〉, classically, we need to calculate the NU expo-
nents {eθiSi} in equation (3), and then multiply them sequentially to |ψ0〉. Each Si is represented by an 2NMO ×2NMO -
dimensional matrix. Hence, the complexity of estimating each exponent eθiSi , directly, is O(23NMO ). However, we
can make use of relation (4) and write each exponent in equation (3) as
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The operators {Si} are fixed throughout a simulation. Therefore, if we compute in advance and store the matrix
representations of each Si and S2

i , we can evaluate the expression in equation (5) by performing matrix addition only,
which has a complexity of O(22NMO ). Hence, the calculation of |ψ(θθθ)〉, requires NU matrix-to-vector multiplications
and NU matrix additions, which gives a total complexity of O(NU22NMO ).

The drawback of the method outlined above is that we need to store the matrices for all Si and S2
i operators. For

example, the most memory demanding simulation in this work, running the qubit-ADAPT-VQE for BeH2, required
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around 2GB of RAM to store the matrices for all Pauli string operators, which define the ansatz element pool of
the qubit-ADAPT-VQE, and their respective squares. However, in this case, a speed-up of nearly a factor of 20 was
achieved, in comparison to calculating |ψ(θθθ)〉 with the general IBM’s Qiskit statevector simulator.

III. SUPPLEMENTARY NOTE 3

When using a gradient-descent minimizer, e.g. the BFGS, we have the option to supply a function that returns
the gradient vector of the minimized function. If we are close to the global minimum, supplying a gradient vector
function guarantees a faster optimization of the variational parameters. In the case of minimizing the Hamiltonian
expectation value E(θθθ) = 〈ψ(θθθ)|H|ψ(θθθ)〉, the ith component of the energy gradient vector, ∇∇∇E(θθθ), is given by
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where
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and NU is the size (the number of ansatz elements) of the ansatz U(θθθ).
For the numerical simulations presented in this paper, theNU components of∇∇∇E(θθθ) can be calculated with minimum

number of matrix multiplications by updating |βi(θθθ)〉 and |αi(θθθ)〉 in the following way:

1. For i = NU , initiate

|αNU
(θθθ)〉 = H|ψ(θθθ)〉 and (10)

|βNU
(θθθ)〉 = |ψ(θθθ)〉 (11)

2. For 1 < i < NU , update

|αi−1(θθθ)〉 = eθiS
†
i |αi(θθθ)〉 and (12)

|βi−1(θθθ)〉 = (eθiSi)−1|βi(θθθ)〉 = eθiS
†
i |βi(θθθ)〉, (13)

where in equation (13), we use that Si is skew-Hermitian, so S†i = −Si.

Assuming that we have already computed and stored the matrices of the exponentials {eθiSi}, when calculating
|ψ(θθθ)〉, to calculate each component of∇∇∇E(θθθ) we need to perform 3 matrix-to-vector multiplications. Thus, overall to
calculate ∇∇∇E(θθθ) we need to perform 3NU matrix-to-vector multiplications, resulting in a total cost of O(3NU22NMO )
operations.

The cost of calculating ∇∇∇E(θθθ) is about 3 times the cost of calculating |ψ(θθθ)〉. However, we find that using the
energy gradient vector in the optimization subroutine of the VQE, reduces the number of VQE iterations by at least
an order of magnitude, which justifies the use of the gradient vector.
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IV. SUPPLEMENTARY NOTE 4

Here, we consider the computational complexity in terms of number of quantum computer measurements, and total
run time. The computational complexity of the QEB-ADAPT-VQE is determined by steps 2 and 3.

Given that the electronic Hamiltonian, H, is represented by up to O(N4
MO) Pauli strings (see equation (7) of

the main text), calculating each gradient in step 2 would require O(N4
MO) quantum computer measurements. Since

|P(Ã,NMO)| ∝ N4
MO, the complexity of step 2, in terms of quantum computer measurements is O(N8

MO). Step
2 is completely parallelizable so if multiple quantum computers are available, its time complexity can be arbitrarily
reduced down to the time required to evaluate the expectation value of a single Pauli string term, which is proportional
to the ansatz circuit depth, scaling as O(m/NMO) (a NMO-qubits circuit of m qubit excitation evolutions), where m
is the iteration number of the QEB-ADAPT-VQE.

Using the BFGS minimizer, optimizing ansatz U (m)
(
~θ(m)

)
, which has O(m) variational parameters, would require

O(m2) VQE energy evaluations. Therefore, each VQE run in step 3 would require O(m2N4
MO) quantum computer

measurement. Hence, the overall complexity of step 3 in terms of measurements would be O(nm2N4
MO). This

complexity is a worst case estimate, assuming that at each iteration, all parameters ~θ(m) are initialized at zero.

In fact, we initiate ~θ(m) as ~θ(m−1) ∪ 0, so we will need fewer VQE energy evaluations to optimize the new ansatz,

U (m)
(
~θ(m)

)
. However, the complexity can also be higher if we use a direct search minimizer, like the Nelder-Mead,

which is likely to be the case in practice, when noisy quantum hardware is used. Again, if multiple quantum devices
are available, each of the n VQE runs can be executed in parallel. Hence, the time complexity would be lower bounded
by the run-time of a single VQE run, O(m3/NMO) (the ansatz circuit depth is O(m/NMO) and we need to perform
O(m2) VQE energy evaluations).

Overall, the QEB-ADAPT-VQE would require O
(
NU (N8

MO + nN2
UN

4
MO)

)
quantum computer measurements, and

its run-time complexity would be lower bounded by O(N4
U/NMO). The size of the ansatz, NU , depends on the

desired accuracy, and also is problem specific. Therefore, it is difficult to predict how it would scale with NMO. For
strongly correlated states, achieving chemical accuracy might require an ansatz that consist of as many as O(N4

MO)
qubit excitation evolutions. However, for weakly correlated states, the scaling of NU with NMO is likely to be lower.
Assuming the worst case scenario, the time complexity of the QEB-ADAPT-VQE will be lower-bounded by O(N15

MO)
and it will require O(nN16

MO) quantum computer measurements. For comparison, the UCCSD-VQE has a time
complexity of O(N11

MO), assuming maximum parallelization, and requires O(N12
MO) quantum computer measurements.

V. SUPPLEMENTARY NOTE 5

Here, we investigate the performance of the QEB-ADAPT-VQE for different values of n, the number of qubit
excitation evolutions considered in step 3 of the QEB-ADAPT-VQE. As we increase n, we increase the chance to
pick at each iteration the qubit excitation evolution that, added to the ansatz, achieves largest energy reduction.
Following this greedy strategy is no guarantee for an optimal ansatz, since qubit evolutions do not commute in
general. Nevertheless, we do expect, on average, to construct a more circuit-efficient ansatz by increasing n up to
some saturation value.

To test this presumption we perform classical numerical simulations to obtain energy convergence plots for the
ground states of LiH, H6 and BeH2 in the STO-3G basis. The simulations for the three molecules are performed for
bond distances rLi−H = 3Å, rH−H = 3Å and rBe−H = 3Å, away from equilibrium configurations, where correlation
effects are stronger, and the effect of increasing n should be more evident. The simulation results are presented in
Supplementary figure 1.

The table below summarizes the average (over number of qubit excitation evolutions) CNOT count reductions,
with respect to n = 1, for each molecule and different value of n:

n = 5 n = 10 n = 30

LiH 16% 20% 16%

BeH2 3% 26% 22%

H6 15% 12% 13%

TABLE I: Average (over number of qubit excitation evolutions) CNOT count reduction for QEB-ADAPT-VQE(nqe >
1) as compared to QEB-ADAPT-VQE(nqe = 1).

For LiH (Supplementary figure 1.a), the QEB-ADAPT-VQE clearly constructs ansatz circuits with fewer CNOT s
as n is increased above 1. For BeH2 (Supplementary figure 1.c), a significant CNOT count reduction is obtained for
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n = 10 and n = 30, but not for n = 5. For H6 (Supplementary figure 1.b), the average CNOT reduction is about
the same for n = 5, n = 10 and n = 30, but strangely the ansatz constructed by the QEB-ADAPT-VQE for n = 1 is
the most CNOT -efficient for accuracies higher than 10−4 Hartree. Also, for all three molecules we observe no further
CNOT reduction for n = 30 as compared to n = 10. Actually for n = 30 the CNOT reduction is a bit lower. As
noted above these inconsistencies can be explained by the fact that the greedy strategy to obtain the lowest estimate

for E(~θ) at each iteration is no guarantee for constructing an optimal ansatz, because qubit excitation evolutions do
not commute.

Nonetheless, there is a clear advantage in terms of CNOT count, in performing step 3 of the QEB-ADAPT-VQE
for n > 1. Despite the associated overhead in the number of quantum computer measurements with increasing n, this
is justified as long as the bottleneck of NISQ computers is the quantum gate fidelity. Furthermore, we can expect
the CNOT count reduction for n > 1 to increase for larger molecules, because the QEB-ADAPT-VQE will have to
consider a larger ansatz element pool.

(a) (c)(b)

Supplementary figure. 1: Performance of the QEB-ADAPT-VQE for different values of the protocol parameter n.
The subfigures above present energy convergence plots obtained with the QEB-ADAPT-VQE with different values
of n for the ground states of LiH (a), H6 (b) and BeH2 (c) in the SO-3G basis, at bond distances of rLi−H = 3Å,
rH−H = 3Å and rBe−H = 3Å. The plots are terminated at ε = 10−12 Hartree.
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